oooooooooo

Core Module-4

(60 hours)

Python Programming

(60 hours)

In this section, we will discuss:

Introduction to Python.
History.

Features

Setting Up Path

Basic Syntax Variable
Data Types Operator
Conditional Statement
Looping

Control Statement

edunet

In this section, we will discuss:

String Manipulation

Lists

Tuple

Functions and Methods
Dictionaries

Functions

Modules

Input and Output

Exception Handling

Object Oriented Programming

edunet

Introduction to Python

Eva G Eacyy Ta l
Free & Easy To

edunet

foundation

A Fast Development

Use :xt v Easily Compatible
S

Extensible 4 Extensive Libraries

Obeject Oriented‘ Fewer Line Codes

Image source: https://images.app.qoo.al/hHjgBxYkqezSBY41A

https://images.app.goo.gl/hHjqBxYkqezSBY41A

Introduction to Python

Characteristics of Python

Simple Syntax

GUI Programming.
Scalable

Free and Open Source

Variety of Usage and Application.

Interpreted and Interactive
Object Oriented

edunet

A Fast Development

x '\ v Easily Compatible

Extensnble 4 Extensive Libraries

Obeject 0r|entedb Fewer Line Codes

Image source: https://images.app.qoo.al/hHjgBxYkqezSBY41A

https://images.app.goo.gl/hHjqBxYkqezSBY41A

Introduction to Python

Advantages over other languages

Simple code

It is easy to understand

It is Free

It Needs Less Coding

All Kinds of Businesses Can Afford it

It is one of the most Trending Language.

edunet

Comparison with other languages

C Program Java Program Python Program
main() class print (“Hello
myfirstjavaprog World!!l”)
printf("hello, {
world\n"); public static void
} main(String args[])
{
System.out.println(
"Hello World!");
}
}

@ python

Image Source: https://images.app.qoo.gl/2K2vApdtZx7vBbVn7

https://images.app.goo.gl/2K2vApdtZx7vBbVn7

History

edunet

foundation

Language Rank Types Spectrum Ranking

Vet @ we e
X Dwe A
e o= FENN
o 2T B
o @D BEL
e @ B
" v B

6 vensow @0 S
e @ W AL

Image Source : https://images.app.qoo.gl/VtzTMjduwUVix1r57

https://images.app.goo.gl/VtzTMjduwUVfx1r57

History

Python Timeline/History and
IEEE rankings

Python was conceptualized by Guido Van
Rossum in the late 1980s.

Rossum Published the first version of Python
code(0.9.0) in February 1991 at CWI(Centrum
Wiskunde & Informatica) in Netherland,
Amsterdam.

Python is Derived from ABC Programming
Language that had been developed at the
CWI.

Language Rank

OF 0 INj O gou A goas N R

-
o

Python
C++

Java

C

C#

PHP

R
JavaScript

Go

. Assembly

Types

& s
af=r

&L
mjeag

SO0

&

{1

&
(]

&

Spectrum Ranking
100.0

99.7

97.5

96.7

89.4

84.9

829

82.6

76.4

741

edunet

Image Source : https://images.app.goo.al/VtzTMjduwUVix1r57

https://images.app.goo.gl/VtzTMjduwUVfx1r57

History

Python Timeline/History and
IEEE rankings (Contd..)

Rossum choose the name “Python” ,
since he was a big fan of Monty Python’s
Flying Circus.

Python is now maintained by a core
development team at the institute,
although Rossum still holds a vital role in
directing its progress.

ed uggj

@ A Short History Of Python @

Conceived Release Release Release
Python Python 0.9 Python 2.0 Python 3.7
] [® ®

Late 80s Dec 1989 Feb 1991 Jan 1994 Oct 2000 Dec 2008 Jun 2018

Started Release Release
implementation Python 1.0 Python 3.0

www.venturelessons.com

Latest
release

-~ ~ y ~ s
"“3.3.4 385 3‘“) (Dev a1 Bl B5 Final) (Dev a1l 1 Final)

‘,omo 09/20 ||.'23‘ \06/19 11119 0520 0720 10/20/ |05/20 10/20 0521 |0/21)

Python 3.10

Python 3.8 Python 3.9

Image Source: https://images.app.qo0.gl/61fVvm834STCtJW89

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/61fVvm834STCtJW89

Features

File Edit Format Run Options Window Help

edunet

foundation

3 n.py - C\Us

1 A
2

wn

X
Yy
X Y=Y, X

print ('After swapping')

print('x Yy X)

print('y v Y) v
Ln:6 Col: 16

[& Python 3.7.2 Shell - u] X
File Ed_it Spe!_l ,erV_Q »Qp(jor_xs Wind_ow Help

Python 3.7.2 (tags/v3.7.2:9a3f£fc0492, Dec 23 2018, 22:20:52) [MSC v.1916 32 bit

(Intel)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>>

RESTART: C:\Users\ASUS\Desktop\main.py
After swapping

X oms

y= -l

>>> X + ¥

3

>>> |

Ln: 10 Cok:4|

Image source :
https://cdn.programiz.com/sites/tutorial2program/files/python-idle.JPG

https://cdn.programiz.com/sites/tutorial2program/files/python-idle.JPG

edunet

Features
Easy to Code and Understand 2
e Python has simpler syntax when v-2 7
compared to C, C++, Java and other print ('Afce:)
programming languages. print (3 = 1 9 G
e This enables any newbie to quickly pick [python 372 shel = B
up the basics of Python. %:ﬁd: ;S.hf{'zjffg%ffif’?.féfé’?ffo‘i'iz, R
e Also, despite being a high-level language, figee:hél;:' "eorighn”; "essdita o icanaet)" e
Python code looks very short much Athex suapping e e ——
readable due to its English like ey
commands. In short, it is a developer- = —

friendly language.
Image source :

https://cdn.programiz.com/sites/tutorial2program/files/python-idle.JPG

https://cdn.programiz.com/sites/tutorial2program/files/python-idle.JPG

Features

Expressive Language

Python is very expressive when compared
to other languages.

By expressive, we mean, in Python a
single line of code performs a lot more
than what multiple lines can perform in
other languages.

In simple it means that fewer lines of code
are required to write a program in Python.

edunet

NON PROGRAMMER PROGRAMMER PYTHON PROGRAMMER

Image Source: https://images.app.goo.gl/Ftdt9TC6dtaVkXHg6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/Ftdt9TC6dtaVkXHg6

Features

Object Oriented

Python is a multi-paradigm
programming language. Meaning, it
supports different programming
approach.

One of the popular approach to solve
a programming problem is by
creating objects.

This is known as Object-Oriented
Programming (OOP).

edunet

Ob ject
Object- N DC{T?.‘
Oriented Abstraction
Programming
Paradigm P

Encapsulation

| —

Y

R N Lnheritance

B ~

%5 0

~|Polymorphism

R —

Image Source: https://images.app.goo.gl/iP8uaejcdL.cDbJCH6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/iP8uaejcdLcDbJCH6

Features

Object Oriented (Contd..)

Python is an “object-oriented
programming language.”

This means that almost all the
code is implemented using a
special construct called
classes.

Object-
Oriented
Programming
Paradigm

™ Inheritance

Y Polymorphism

edunet

Class

Object

Data
Abstraction
~

Encapsulation

| —

I |

~

A

| —

Image Source: https://images.app.goo.gl/iP8uaejcdL.cDbJCH6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/iP8uaejcdLcDbJCH6

Features

Extensible Language

In case you want to write a part
of your Python code in C++ or
Java etc, then you can do it.
Since Python is an extensible
language, it lets you do this with
ease.

edunet

it)

Free and Open Source

Multipie

Interpreter based

Easy to leam

Image Source: https://techvidvan.com/tutorials/features-of-python/

https://images.app.goo.gl/61fVvm834STCtJW89
https://techvidvan.com/tutorials/features-of-python/

foundation

Features
Dynam|ca|I{;yl/q%idagéogrammmg Python’s Dynamic Type System
* Python uses dynamic typing. There is no type for
e Python is a dynamically typed ?jggTa(Zc.ers, variables and fields. Each value has a
Ianguage- >>>a=3
e This means, whenever a variable is e Lypeta)
declared, the programmer need not :ip::";tg
mention its data type. >>> type(a)
e Rather, the type of the variable is i jlfslt:ls —
decided during run time. >>> type(a)

<type 'str'>

Image Source: https://techvidvan.com/tutorials/features-of-python/

https://images.app.goo.gl/61fVvm834STCtJW89
https://techvidvan.com/tutorials/features-of-python/

e d U QHEOI

Features

Use of Interpreter

Python installation interprets and
executes the code line by line at
a time.

Python interpreter offers some
pretty cool features:

Interactive editing rerict |
History substitution —_—
Code completion on systems

with support for readline

Running code

Image Source: https://images.app.qoo.gl/zFfSFEXMyPCLGPZcA

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/zFfSFFXMyPCLGPZcA

Features

Free & Open Source

Python language is freely available

I.e without any cost.

It is open and available to anyone.
Anyone can freely distribute it,read the
source code and edit it.

Pythons license is administered by the
Python Software Foundation,

Image Source: https://images.app.qoo.gl/WLD1cUM2GXMKOESZ6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/WLD1cUM2GXMk9E5Z6

edunet

Features

Cross Platform Language

Python can run equally well on
variety of platform-

Windows

Linux/Unix

Macintosh

Smart Phones etc

We can also say that Python is a
portable language.

Image Source: https://images.app.goo.gl/WLD1cUM2GXMkKIESZ6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/WLD1cUM2GXMk9E5Z6

Features
Large Standard Library

Python has a large standard library and
this helps save the programmers time
as you don't have to write your own
code for every single logic.

There are libraries for expressions, unit-
testing, web browsers, databases, CGl,
image manipulation etc.

edunet

L Python Standard Libraries

e . .
sys System-specific parameters and functions
time Time access and conversions
thread Multiple threads of control
re Regular expression operations
email Email and MIME handling

httplib HTTP protocol client

tkinter GUI package based on TCL/Tk (in Python
2 .x this is named Tkinter)

See http://docs.python.org/library/index.html

Image Source: https://docs.python.org/3/library/index.html

https://images.app.goo.gl/61fVvm834STCtJW89
https://docs.python.org/3/library/index.html

Features

Large Standard Library
(Contd..)

Python provide rich set of module
and functions for rapid application
development

Python’s bulk of the library is very
portable and cross-platform
compatible on UNIX, Windows and
Macintosh.

edunet

Python Standard Libraries

sys
time
thread
re
email
httplib
tkinter

System-specific parameters and functions
Time access and conversions

Multiple threads of control

Regular expression operations

Email and MIME handling

HTTP protocol client

GUI package based on TCL/Tk (in Python
2 .x this is named Tkinter)

See http://docs.python.org/library/index.html

Image Source: https://docs.python.org/3/library/index.html

https://images.app.goo.gl/61fVvm834STCtJW89
https://docs.python.org/3/library/index.html

edunet

Features
Elegant Syntax

Python Elegant Syntax means it is more
capable to expressing the code’s purpose
than many other languages.

Python can easily test even small portion of
code.

Python’s elegant syntax and

dynamic typing, together with its
interpreted nature, make it an ideal
language for scripting and rapid
application development in many areas on
most platforms.

Python takes coding like natural
human-language.

Tl
N ©

o O
o

sum=a + b
print (sum)|

Image Source: https://images.app.goo.gl/ZPuTEDwaKeEAcv8h6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/ZPuTEDwaKeEAcv8h6

Setting Up Path
Installation of Python IDLE

List of Hardware/Software
Requirements:

Laptop/Computer with

Windows/Linux OS-Ubuntu 18.04LTS
Python Software

Installation Steps:

Install Python software in the system.
Open the browser and type the
python.org/downloads.

edunet

¢ Python 3.10.1 (64-bit) Setup

-
A

python

windows

Install Python 3.10.1 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

@ Install Now
C\U

sers\andre\AppData\Local\Programs\Python\Python310
Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation

Choose location and features

Install launcher for all users (recommended)
[J Add Python 3.10 to PATH Cancel

Image Source: https://www.geeksforgeeks.org/how-to-install-

python-on-windows/

https://images.app.goo.gl/61fVvm834STCtJW89
https://www.geeksforgeeks.org/how-to-install-python-on-windows/
https://www.geeksforgeeks.org/how-to-install-python-on-windows/

Setting Up Path

Installation of Python in
Windows(Contd..)

Choice either Windows x86-64
executable installer for 64-bit or
Windows x86 executable installer for
32-hit.

After downloading a file this page will
appeat.

Install the software

Select Add Python 3.10 to Path

edunet

& Python 2.10.1 (64-bit) Setup

./
A

python

windows

Install Python 3.10.1 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

@ Install Now

Ci\Users\Utente\AppData\Local\Programs\Python\Python310

Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation

Choose location and features

Install launcher for all users (recommended)
Add Python 3.10 to PATH Cancel

Image Source: https://www.geeksforgeeks.org/how-to-install-

python-on-windows/

https://images.app.goo.gl/61fVvm834STCtJW89
https://www.geeksforgeeks.org/how-to-install-python-on-windows/
https://www.geeksforgeeks.org/how-to-install-python-on-windows/

Setup Successful

edunet

foundation

© Python 3.10.1 (64-bit) Setup = X
Setup was successful

New to Python? Start with the online tutorial and
documentation. At your terminal, type "py" to launch Python,
or search for Python in your Start menu.

See what's new in this release, or find more info about using
Python on Windows.

® Disable path length limit
Changes your machine configuration to allow programs, including Python, to
bypass the 260 character "MAX_PATH" limitation.

python

for

windows Close

Image Source: https://www.geeksforgeeks.org/how-to-install-
python-on-windows/

https://images.app.goo.gl/61fVvm834STCtJW89
https://www.geeksforgeeks.org/how-to-install-python-on-windows/
https://www.geeksforgeeks.org/how-to-install-python-on-windows/

edunet

foundation

System Properties

Setti n g Up Path ' Computer Name § Hardware | Advanced System Protection [Remote

How to set Python Path in Windows

Variable name:

Variable value:

e To permanently modify the default
e environment variables :

System variables
Variable
oS
Path
PATHEXT

Environment Variables

Path

'+ Files\Java ydk1.8.0_121Voin; SIS |

Value |

Windows_NT

C:\ProgramData\Orade\Java\javapath;...

e My Computer > Properties > PROCESSOR A...

Advanced System Settings >
Environment Variables > Edit

.COM; .EX=;.8AT;.CMD;.VBS;.VBE;.35;. ...
AMDSE<= vl
New. .. Edit... | Delete
OK Cancel

Image Source: https://net-
informations.com/python/intro/path.htm#qgooqgle vignette

https://images.app.goo.gl/61fVvm834STCtJW89
https://net-informations.com/python/intro/path.htm
https://net-informations.com/python/intro/path.htm

edunet

Setting Up Path

HOW to SEt Python Path In ‘Compmer Name Hardware Advanced System Protection | Remote
W| ndOWS(CO ntd .) Environment Variables

System Properties

Right-click ‘My Computer'.

Select 'Properties' at the bottom of the .
C t t Menu Variable value: 1Fnles‘\.‘;a-.-aydk1.8.9_1721\1?!rj;md
ontex : -
Select 'Advanced system settings'
System variables

Click 'Environment Variables..." in the i Vel =
Advanced Tab S:m Z\,:.;drz;?a::;ata\Orade\Java\javapam;...

. . . PATHEXT .COM;.BEXE;.BAT;.CMD;.VBS;.VBE;.35;....
Under 'System Variables': Click Edit PROCESSOR A... AMDSA v
Add python path to the end of the list (the B2 Sy [Duew
paths are separated by semicolons(;)) oK Cancel

Image Source: https://net-
informations.com/python/intro/path.htm#google vignette

https://images.app.goo.gl/61fVvm834STCtJW89
https://net-informations.com/python/intro/path.htm
https://net-informations.com/python/intro/path.htm

Setting Up Path

Installation of Python in Linux
Linux is an open source Operating System.
There are many Linux based operating
systems. Popular are Ubuntu, Fedora,
Linux Mint, Debian.
Open the terminal or Command prompt
from your linux based OS. Type the
following commands.
If you are using Ubuntu 16.0 or newer
version, then you can easily install Python
3.6 or Python 2.7 by typing the following
commands

foundation

File Edit View Search Terminal Help

sana@linux:~$ sudo apt-get update
[sudo] password for sana:
Get:1 http://security.ubuntu.com/ubuntu bionic-security In

Hit:2 http://us.archive.ubuntu.com/ubuntu bionic InRelease
Get:3 http://us.archive.ubuntu.com/ubuntu bionic-updates I
Get:4 http://us.archive.ubuntu.com/ubuntu bionic-backports
Fetched 247 kB in 3s (86.9 kB/s)

Reading package lists... Done

Image Source: https://phoenixnap.com/kb/how-to-install-python-3-
ubuntu

https://images.app.goo.gl/61fVvm834STCtJW89
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

Setting Up Path

Installation of Python in Linux
(Contd..)

e $ sudo apt-get update
e 3 sudo apt-get install python3

e $ sudo apt-get update
e $ sudo apt-get install python2.7

foundation

dataflair@admin4-H110M-H: ~ e®0
File Edit View Search Terminal Help
dataflair@adnind-H110M-H: ~$
[sudo] password for dataflair:
Reading package lists... Done
Building dependency tree
Reading state information... Done
python3 is already the newest version (3.6.7-1~18.04).
0 upgraded, O newly installed, 0 to remove and 291 not upgraded.
dataflair@admin4-H116M-H:~$ []

Image Source: https://phoenixnap.com/kb/how-to-install-python-3-
ubuntu

https://images.app.goo.gl/61fVvm834STCtJW89
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

Setting Up Path

Installation of Python in Linux
(Contd..)

You can check it is installed or not
by

Type the following commands

in terminal.

For Python3:-

$ python3 --version

For Python2:-

$ python2 --version

edunet

Activities [Terminal ~ Tue 15:15

File Edit View Search Terminal Help
meta@meta-VirtualBox:~/MetaWear-SDK-Python/examples$ which python3

‘:) meta@meta-VirtualBox: ~/MetaWear-SDK-Python/examples
y

Jusr/bin/python3

meta@meta-VirtualBox:~/ -SDK-Python/e es$ python3 --version
Python 3.6.7

meta@meta-VirtualBox e 3 K-Python/ S pip3 --version
pip 9.0.1 from fusr/lib

meta@meta-VirtualBox:~/Me ear-SDK-Python/exam

Image Source: https://phoenixnap.com/kb/how-to-install-python-3-
ubuntu

https://images.app.goo.gl/61fVvm834STCtJW89
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

Setting Up Path

How to Set Python Path in Linux

The steps for adding Path in Linux
are fairly straight forward, just
follow the steps outlined below.

In the csh shell, type the following
sentence:

PATH
“$PATH:/usr/local/bin/python” and
press Enter.

foundation

(x X—XO jlwallen@ubuntu1710: ~

File Edit View Search Terminal Help

jlwallen@ubuntu1710:~S echo SPATH

Jusr/local/sbin: /usr/local/bin: /usr/sbin: /usr/bin:/sbin:/bin:/usr/games: /usr/loc
al/games:/snap/bin

jlwallen@ubuntu1710:~$ export PATH=SPATH: /opt

jlwallen@ubuntu1710:~$ echo SPATH

Jusr/local/sbin: /usr/local/bin: /usr/sbin: /usr/bin:/sbin:/bin:/usr/games: /usr/loc
al/games:/snap/bin: /opt

jlwallen@ubuntu1710:~$ |

Image Source: https://phoenixnap.com/kb/how-to-install-python-3-
ubuntu

https://images.app.goo.gl/61fVvm834STCtJW89
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

foundation

Setting Up Path

open up the bash shell and type

O ® jlwallen@ubuntu1710: ~

th e fo | | OWI n g p h rase File Edit View Search Terminal Help

jlwallen@ubuntu1710:~$ echo S$PATH

Jusr/local/sbin: /usr/local/bin: /usr/sbin: /usr/bin:/sbin:/bin:/usr/games: /usr/loc
al/games: /snap/bin
jlwallen@ubuntu1710:~$ export PATH=SPATH: /opt

] export jlwallen@ubuntu1710:~$ echo S$PATH
. /;Jjrél}lgz?}ézg;;\g{g?;é;gcal/bin:/usr/sb"Ln:/usr/bin:/sbin:/bin:/usr/games:/usr/loc
PATH="$PATH:/usr/local/bin/python” Tlusilenaubuntuszao o i

and press Enter.

e If you have access to either sh or
ksh shell, then open up the terminal
and type the following,

e PATH="$PATH:/usr/local/bin/python”
and press Enter.

Image Source: https://phoenixnap.com/kb/how-to-install-python-3-
ubuntu

https://images.app.goo.gl/61fVvm834STCtJW89
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

Setting Up Path

How to Set Python Path in
Linux (Contd..)

One of the most important things
to note

when you are adding Path to
Python in Unix or Linux is that,
/usr/local/bin/python is the default
path of the Python directory.

foundation

(< X—YO jlwallen@ubuntu1710: ~

File Edit View Search Terminal Help

jlwallen@ubuntu1710:~$ echo S$PATH

Jusr/local/sbin: /usr/local/bin: /usr/sbin: /usr/bin:/sbin:/bin:/usr/games: /usr/loc
al/games: /snap/bin

jlwallen@ubuntu1710:~$ export PATH=SPATH: /opt

jlwallen@ubuntu1710:~$ echo SPATH

Jusr/local/sbin: /usr/local/bin: /usr/sbin: /usr/bin:/sbin:/bin:/usr/games: /usr/loc
al/games:/snap/bin: /opt

jlwallen@ubuntui7ie:~S i

Image Source: https://phoenixnap.com/kb/how-to-install-python-3-
ubuntu

https://images.app.goo.gl/61fVvm834STCtJW89
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

edunet

foundation

PYTHON VARIABLES

g T—[Variable Name]

User Declares Variable

—— WHAT HAPPENS IN PYTHON MEMORY? |———

10
Basic Syntax Variable
— A —| A
Object "Integer" Variable Name Value "10" is
is created "A" is given stored
(®, eoucea

Image Source: https://images.app.qoo.gl/pLedhKeCYfNXcyLy7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/pLedhKeCYfNXcyLy7

Basic Syntax Variable

Variables

A variable is a container for a
value.

It can be assigned a name, you
can use it to refer to it later in the
program.

Based on the value assigned, the
interpreter decides its data type.

edunet

PYTHON VARIABLES

Value

m T—[Variable Name

User Declares Variable

4{ WHAT HAPPENS IN PYTHON MEMORY"

— A —
Object "Integer" Variable Name Value "10" is
is created "A" is given stored

e EDUCBA

Image Source: https://images.app.qoo.gl/pLedhKeCYfNXcyLy7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/pLedhKeCYfNXcyLy7

Basic Syntax Variable

Interactive Mode Programming

In Python, the code executes via the
Python Shell, which comes with
Python Installation.

To access the Python shell, open the
terminal of your operating system and
then type "python". Press the enter
key and the Python shell will appear.

ed uggj

fthon 3.8.0 Shell = g

| File Edit Shell Debug Options Window Help
Python 3.8.0 (tags/v3.8.0:£fa919fd, Oct 14 2019, 19:21:23) [MSC v.1916 32 bit (

Intel)] on win32
Type "help", "copyright", "credits" or "license()" for more information.

>>>

>>> print ("This is Interactive mode of Python'")
This is Interactive mode of Python
>>>

H O Type here to search

================ RESTART: C:/Python/Python38-32/edunet/test.py ===============

X

ed uggj

Basic Syntax Variable

U [& python 380 Shell - O X
. . | File Edit Shell Debug Options Window Help
Interactlve Mode Programmlng 1;1222;1]3;3.:ir(1;:gs/v3.8.0:f3919fd, Oct 14 2019, 19:21:23) [MSC v.1916 32 bit (
((::()'1't(j) Type "help", "copyright", "credits" or "license()" for more information.
e >>>

>>> print ("This is Interactive mode of Python'")

e The indicates that the Python shell is el
ready to execute and send your
commands to the Python interpreter.

e The result is immediately displayed on
the Python shell as soon as the Python
interpreter interprets the command.

=

Basic Syntax Variable

Script Mode Programming

Script mode is used to work with lengthy
codes.

In Script mode, You write your code in a
text file then save it with a .py extension.
you can run your code by clicking”’Run”

then “Run module” or simply press F5.

You can use any text editor to wite the code
like- Sublime, Atom, Notepad++, etc.

E_f;; hello.py - C:/Users/admin/hello.py (3.5.0)

edunet

File Edit Format Run Options Window Help

'n)

| & Python 3.5.0 Shell

D64)] on win32
IType "copyright",
>>>

File Edit Shell Debug Options Window Help
Python 3.5.0 (v3.5.0:374f501f4567, Sep 13 2015, 02:27:37) [MSC

"credits" or "license ()" for more informatic

Hello World

>>>

RESTART:

edunet

Basic Syntax Variable
Python Identifiers

A Python identifier is a name used to find a QL
variable, function, class, module or other
object.

An identifier begin with a letter Ato Z or a Identifiers in
to z or an underscore() followed by zero @Python —

or more letters and digits (0 to 9). -

Python doesn’t permit punctuation ‘
character such as @, $ and % within |

identifiers. \

Python is a case sensitive Programming
Language.

Image Source: https://www.google.com/Python-ldentifiers.jpg

https://images.app.goo.gl/61fVvm834STCtJW89
https://www.google.com/imgres?imgurl=https://coding.booksinhindi.com/wp-content/uploads/2020/02/Python-Identifiers.jpg&tbnid=BXaMsPlhf_sOXM&vet=1&imgrefurl=https://coding.booksinhindi.com/python-identifiers/&docid=m7-30mT-caY4NM&w=550&h=400&source=sh/x/im/m1/1&kgs=1eef25b30e1e8e7c&shem=abme,trie

Basic Syntax Variable

Reserved Keywords

There are reserved words and
cannot use them as constant or
variable or any other identifier
names.

All the Python keywords contain
lowercase letters only.

False

class

finally

A Python Reserved Keywords

is

None

continue

for

lambda

True

def

from

nonlocal

and

del

global

not

as

elif

if

or

assert

else

import

pass

break

Image Source:

except

https://images.app.goo.gl/Tz4VmldpgUkWGpWn9

in

raise

edunet

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/Tz4Vm1dpgUkWGpWn9

Basic Syntax Variable

Lines and Indentation

Python provides no braces to
indicate blocks or code for class
and function definitions or flow
control.

Blocks of code are denoted by
line indentation, which is rigidly
enforced.

The number of spaces in the
indentation is variable, but all
statement within the block must
be indented the same amount.

edunet

def f09()=" 1st level indentation
prenei e foo() method statements
if True:
print("“true") 2nd level indentation
else: if and else block code

<i::print("false")

Code without indentation
print("Done")/BelongS to the source file

Image Source: https://images.app.qoo.gl/rBAU8eBd2GsUXYtZ9

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/rBAU8eBd2GsUXYtZ9

edunet

Basic Syntax Variable

Multi-Line Statement:

Multi Line Statement total = item_one +\

item_two +\
item_three
® Python is to be able to easily Statgments c.ontal.ned within the [], {} or () brackets do not need to use
. . . the line continuation character.
print across multiple lines. For example:
. c days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']
e Statements contained within the Y X Y ' YarHicey
[],{} or () brackets do not need
to use the line continuation

character.

Image Source: https://www.slideshare.net/slideshow/fundamentals-of-
python-language/124292692

https://images.app.goo.gl/61fVvm834STCtJW89
https://www.slideshare.net/slideshow/fundamentals-of-python-language/124292692
https://www.slideshare.net/slideshow/fundamentals-of-python-language/124292692

Basic Syntax Variable

Quotation in Python

e Python accepts single (), double (%),
and triple (" or " ") quotes to denote
string literals, as long as the same
type of quote starts and ends the
strings.

e The triple quotes are used to span
the string across multiple lines.

edunet

-
{ & Python 35.2 Shell

lEilé Edit Shell Debug Options Window Help
> myString = "Python"

>»> print (myString)

Python

>>> myString = 'Python’

>>> print(myString)

Pythen

>>> myString = """Hello

cor] P ARTIND
world of Python
>> print (myString)
Hello

woxld of Python

> i |

Ln:200 Cokd |

Image Source: https://images.app.qoo.gl/PFnJJHof1xDggssV6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/PFnJJHof1xDqqssV6

Basic Syntax Variable

Quotation in Python (Contd..)

For example, all the followings
are legal-

word = 'word’

sentence = “This is a
sentence”

Paragraph = “"This is a
paragraph. It is made up of
multiple lines and
sentences.”™”

[12LEH]

edunet

| & Python 3.5.2 Shell

file Edit Shell Debug Options Window Help
>>> myString = "Python"

>>> print (mySctring)

Python

>>> myString = 'Python’

>>> print (nyString)

>>> m,S'*zng = NHMHal s
sorld thon™M®

>>> pri -t(m yString)
Hello

woxrld of Python

>>>

Ln:200 Cok4 |

Image Source: https://images.app.qoo.gl/PFnJJHof1xDggssV6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/PFnJJHof1xDqqssV6

ed uggj

Basic Syntax Variable

ﬁgi- pyprogram.py - D:\python\pyprogram.py (3.8.1)
File Edit Format Run Options Window Help

Single line comment
Comments in Python eint(iotio siecniesy | Singlo-ine Comment |
e A hash sign (#) that is not inside o (Multi-line Comments
a string literal begins a comment. L
e All characters after the # and up print (‘Hellor)
to the end of the physical line are i
part of the comment and the

Python interpreter ignores them.

Image Source: https://images.app.qo0.gl/AgSONnFVLUZArQFs5

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/AgSoNnFVLUZArQFs5

Basic Syntax Variable

Using Blank Lines

A line containing only
whitespaces, possibly with a
comment, is known as a blank
line and Python totally ignores it.
In an interactive interpreter
session, you must enter physical
line to terminate a multiple
statement.

edunet

“def add function():

print "hi"

def main():

N ~n

PEP 8: expected 2 blank lines, found 1

Basic Syntax Variable

Input from the User

Builtin function - input()

File Edit Format Run Optiens Window Help

edunet

foundation

country = input ("Which Country You From : ™}
city = input ("Which City You From : ™)

print ("S5o You Come From ", country,"” And City

input ("Press Any Eey To Quit @ ")

This python program to accept user input
Python have simple syntax

Python is used for data science

Called ",citcy)

Basic Syntax Variable

Input from the User (Contd..)

even when the user inputs an
integer value, it will still be
considered as a string.
input()-input() interprets and
evaluates the input entered by
the user, which means if the
user enters an integer, an
integer will be returned and if
the user enters a string, a
string will be returned.

edunet

2 user_input.py

value = input("Please enter a string:\n")

print(f'You entered {value}')

Run: user_input
/Users/pankaj/Documents/PycharmProjects/Pytho
> Please enter a string:
Python
You entered Python
m | -

Process finished with exit code 0

il
-

Image Source: https://images.app.goo.gl/UjRhrkMQHI1WHB6XS8

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/UjRhrkMQH1wHB6XS8

Basic Syntax Variable

Waiting for the User

The following line of the program
displays the prompt, the statement
saying “Press the Enter key to Exit".
Wait for the user to take action-
raw_input(“/n/n Press the Enter key to
Exit.”).

Here, /n/n is used to create two new
lines before displaying the actual line.

edunet

txt = input ("Type something to test this out: ")

Example for- Waiting for the user input.
print ("Is this what you just said? ", txt)

[& *Python 320 Shell - o X

File Edit Shell Debug Options Window Help

Python 3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:21:23) [MSC v.19
16 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license()" for more informa
tion.

>>>

RESTART: C:/Python/Python38-32/test.py =============
Type something to test this out:

H O Type here to search

Basic Syntax Variable

Multiple Statement on a Single Line

The Semicolon (;) allows multiple
statements on the Single Line
given that neither statement starts
a new code block.

Here is a simple snip using the
semicolon-

Import
sys;x="foo”sys.stdout.write(x+'\n’)

mat Run Options Window Help

sys; x = 'foo'; sys.stdout.write(x + '"\n')

ed uggj

[Python 3.8.0 Shell

Intel)] on win32

>>>

File Edt Shell Debug Options Window Help

Python 3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:21:23)

i m 9 B

)

Type "help", "copyright", "credits" or "license()"

E & B E

- O

[MSC v.1916 32 bit (

for more information.

A®

ENG 11:01PM
IN 4/5/2020 5‘

X

foundation

Basic Syntax Variable

Multiple Statement Groups as SUItES sww cmmimmmns

1f expression :
e A group of individual statements, ~ suite |
which make a single code block are LA SRS B

suite
called Suites in Python. else :
e Compound or complex statements, suite.
such as if, while, def, and class
require a header line and a suite.
e Header lines begin the statement
(with the keyword) and terminate
with a colon (:) and are followed
by one or more lines which make
up the suite.

edunet

foundation

Python
Operators

Arithmetic Relational Assignment
Operators Operators Operators

Data Types Operator

Membership
Operators

Image Source: https://images.app.goo.gl/Lsegbjus8olmXGJy8

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/Lseqbjus8o1mXGJy8

Data Types Operator

Types of Operator

Python Arithmetic Operator
Python Comparison Operator
Python Assignment Operator
Python Bitwise Operator
Python Logical Operator
Python Membership Operator
Python Identity Operator
Python Operator Precedence

e d U QHQOHT

Python
Operators

Arithmetic Relational Assignment
Operators Operators Operators

Membership
Operators

Bitwise
 Operators

Image Source: https://images.app.goo.gl/Lsegbjus8olmXGJy8

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/Lseqbjus8o1mXGJy8

Data Types Operator

Python Arithmetic Operator

Arithmetic Operators are used
to perform mathematical
operations like addition,
subtraction, multiplication etc.

edunet

| & Python 3.6.1 Shell
File Edit Shell Debug Options Window Help

S>>
>>>
>>>
7
>>>
3
S>>
10
>>>
o)
S>>
1
>>>
2
S>>
25

X

¥
b4

b4

+ 0

/

%

5
2
b4
¥
4

Yy

Yy

#Addition Operator
#Subtraction Operator
#Multiplication Opera
#Division Operator

#Modulus Operator

toxr

// y #Floor Division Operator

*% y #Exponent Operator:

~

X'y

v

Ln: 19 Col: 4

Image Source: https://images.app.goo.gl/D8YpxtkyZlaHSaYqg5

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/D8YpxfkyZ1aHSaYq5

Data Types Operator

Python Comparison Operator

e Comparison Operators are used
to compare values.

e It either returns True or False
according to the condition

foundation

Less than

@- Greater than

Less than or

equal to
Greater than or

equal to

Comparison
Operators

Equal to (==]

(=) S equal to

Image Source: https://images.app.goo.gl/P3ceUaPYPVn6WhUdA

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/P3ceUaPYPVn6WhUdA

Data Types Operator

Python Assignment Operator

e Assignment Operator are used
to Python to assign values to
variable.

e Equals (=) operator is the most
commonly used assignment
operator in Python.

edunet

Hxe BPython Assignment Operator

—

|
Multiply

and
Assign(*=)

Add and
Assign(+=)

Modulus
and
Assign(%=)

Subtract Divide

and and
Assign(-=) Assign(/=)

Exponent Floor-Divide
and and

Assign(**=) Assign(/=)

Image Source: https://images.app.goo.gl/mMu7mwghd7G5Wkwg7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/mMu7mwghd7G5Wkwg7

edunet

Data Types Operator

Bitwise operators in Python

)) Operator Meaning Example
Python Bitwise Operator

& Bitwise AND X& y = 0 (0000 0000)
Bitwise Operators act an Operand o
as if they were string of binary | Bitwise OR X | y'= 14 (Sagtis)
digits. It operates bit by bit hence, - Bitwise NOT ~x = -11 (1111 e101)
the name. "1
Foreg- 2is 10 in binaryand 7 is " Blwise 208 X y= 14 Gopiinn)
111. >> Bitwise right shift x>> 2 = 2 (eeee ee1e)

Now In this table

Let x=10 (0000 1010 in binary)
and y=4 (0000

0100 in binary) Image Source: https://images.app.qo0.gl/pMuXXSQoJ7E9wWCTk6

<< Bitwise left shift x<< 2 = 40 (o010 1000)

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/pMuXXSQoJ7E9wCTk6

Data Types Operator

Python Logical Operator

There are three types of Python

Logical Operator-
And Operator
Or Operator
Not Operator

edunet

foundation

Python Logical Operators:

oP:: at Description Example
and Called Logical AND operator. If both the (a and b) is true.

operands are true then then condition
becomes true.

or Called Logical OR Operator. If any of the two (a or b) is true.
operands are non zero then then condition
becomes true.

not Called Logical NOT Operator. Use to reverses not(a and b) is false.
the logical state of its operand. If a condition
is true then Logical NOT operator will make
false.

Image Source: https://images.app.goo.gl/MwiwjPASLIZ8SBaYA

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/Mw1wjPASLrZ8SBgYA

Data Types Operator

Python Membership Operator

e inand not in are the membership
operators in Python.

e They are used to test whether a
value or variable is found in a
sequence (string, list, tuple, set
and dictionary).

edunet

Python Membership Operators

Operator Description

in Evaluates to true if it finds a
variable in the specified
sequence and false
otherwise.

not in Evaluates to true if it does
not finds a variable in the
specified sequence and false
otherwise.

Example

x in y, here in results in
a 1 if x is a member of
sequence y.

x not in y, here not in
results in a 1 if x is not
a member of sequence
y.

Image Source: https://images.app.goo.gl/3NA6GpPMD5b9ZRbb7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/3NA6GpPmD5b9ZRbb7

edunet

Data Types Operator

Python Identity Operator

Operator Description Example
is Evaluates to true if the x is y, here is results in
variables on either side of 1 if id(x) equals id(y).
e s and is not are the identity I Epsreri ol Ee
] same object and false
operators in Python. otherwise.
° They are used to check if two is not Evaluates to false if the X Is not y, here is not
. variables on either side of results in 1 if id(x) is
values (or variables) are located the operator point tothe ot equal to id(y).
same object and true
on the same part of the memory. M

e Two variables that are equal
does not imply that they are
identical. Image Source: https://images.app.goo.gl/Yj7kCuftoUTZo4ax6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/Yj7kCuftbUTZo4aX6

Data Types Operator

Python Operators Precedence

e From the highest Precedence
to the
e |owest down the table.

e Operators on the same row
have the same Precedence.

edunet

Python Operator Precedence

Precedence

Operator Sign

Operator Name

Highest

L3

Exponentiation

+X, -X, ~X

Unary positive, unary
negative, bitwise negation

* 1,1/, %

Multiplication, division, floor,
division, modulus

+, - Addition, subtraction
<<, >> Left-shift, right-shift
& Bitwise AND
A Bitwise XOR
| Bitwise OR
e ': <, <=, >
L i Comparison, identit
>=, 15, 1S nhot e 3
not Boolean NOT
' and Boolean AND
Lowest or Boolean OR

Image Source: https://images.app.goo.gl/7CSIHQToMXXx6Tet8

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/7CS1HQToMXXx6Tet8

Conditional Statement

edunet

foundation

Python Decision Making

» If statement

if expression:
statement(s)

» If..else statement
if expression:
statement(s)
else:
statement(s)

» Nested If statement

In a nested if construct, you can have an
if...elif...else construct inside another if...elif...else

construct.

Conditional Statement

Statement And Description (Contd..)

The basic Decision statements in

Computer is Selection Structure.

The Decision is described to computer as a
conditional statement that can be

answered True or False.

Python language provide the following
conditional (Decision Making) statements.

If Statement

If...else Statement
If...elif...else Statement
Nested if...else Statement

ed uggj

Python Decision Making

» If statement

if expression:
statement(s)

» If..else statement
if expression:
statement(s)
else:
statement(s)

» Nested If statement

In a nested if construct, you can have an
if...elif...else construct inside another if...elif...else

construct.

edunet

Conditional Statement

Statement And Description (Contd..)

If condition is True

e If statement-
The If statement is decision making

statement. condis
It is used to control the flow of the statement ! ';::al'::’"

and also used to test logically whether the
condition is true or false.

e Syntax —

Conditional code

Fig: Flowchart of single selection if statement

If test expression:

Image Source: https://images.app.qo0.gl/6Wn2Zck8wQYJADGI

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/6Wn2Zck8wQYJAfDG9

Conditional Statement

Statement And Description(Contd..)

e Example Program:
I=int(input("Enter the Number : "))
if(i<10):

print("Condition is True")

»

edunet

foundation

7Y
i¥iﬂt(ihpu£("ﬁnter the Number : "))
if (i<10):

print("Condition is True")

| [Python 3.8.0 Shell = o X
File Edt Shell Debug Options Window Help

Python 3.8.0 (tags/v3.8.0:£fa919fd, Oct 14 2019, 19:21:23) [MSC v.19
16 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license ()" for more informa
tion.

>>>

Enter the Number : 6
Condition is True
>>> |

- = ENG 354PM
H O Type here to search B ~mw " o B

edunet

Conditional Statement

S

a When the If

Condition is
True

Statement And Description (Contd..)

When the If
Condition is v

e |[f..else statement-
The if..else statement is called

alternative execution, in which there)
are two possibilities and the condition S educha.com

determines which one get executed.

Image Source: https://images.app.goo.gl/gQHZX3IDoYmMG6SE6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/qQHZX3JDoYjmG6sE6

Conditional Statement

Statement And Description (Contd..)

e Syntax-

if test expression:
body of if
else:
body of else

J !

N

/
g Condition\

7
N

\ False
——

Body of else

-

edunet

Image Source: https://images.app.goo.gl/Yj7kCuftbUTZo4aX6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/Yj7kCuftbUTZo4aX6

Conditional Statement

num=int(input("Enter the Number : "))
if(num%2)==0:

print("Given number is Even")
else:

print("Given number is Odd")

edunet

)

num=int (input ("Enter the Number : "))
1f (num%2)==0:

print ("Given number is Even")
else:

print ("Given number is 0dd")

& e 10

Fie G Oe Deg Opooms

Python 3.8.0 (tags/v3.8.0:£a919fd, Oct 14 2019, 19:21:23) [MSC v.19
16 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license()" for more informa
tion.

>>>

========== RESTART: C:/Python/Python38-32/edunet/test.py ==========
Enter the Number : 5

Given number is Odd

>

Conditional Statement

Statement And Description (Contd..)

e Elif Statement-

Elif is a keyword used in python in
replacement of else if to place another
condition in the program.

This is called chained conditional.
Chained conditions allows than two
possibilities and need more than two
branches.

Figure — elif condition Flowchart

l

< condition 1 > true- -

R
false

code block 1

edunet

<__condition 2 “—true——

code block 2

false

<_ condition 3 > true—»

code block 3

Image Source: https://images.app.goo.gl/eingW780QMyGTifcT8

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/einqW78QMyGTifcT8

edunet

Conditional Statement

Statement And Description (Contd..)

Figure — elif condition Flowchart

|

if expression: , T>rue——el code ook 1
body of if 'l

elif expression: = c_onci:aon 2> true——»| code block 2
body of elif =

else: ,fé?"ffitifn_i‘ ~—true—»| code block 3
body of else

Image Source: https://images.app.goo.gl/eingW780QMyGTifcT8

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/einqW78QMyGTifcT8

edunet

foundation

B test

File Edit Format Run Options Wi

w Help

a=int (input ("Enter 1lst Number : "))
b=int (input ("Enter 2nd Number : "))
c=int (input ("Enter 3rd Number : "))
if(a>b)and(a>c):

print("a is greater")
elif (b<a)and (b<c):

print("b is greater")
else:

print("c is greater")

Conditional Statement i 2 o e .
Python 3.8.0 (tags/v3.8.0:£fa919fd, Oct 14 2019, 19:21:23) [MSC v.1916 32 bit (

Intel)] on win32

Type "help", "copyright", "credits" or "license()" for more information.
>>>
========== RESTART: C:/Python/Python38-32/edunet/test.py ==========

Enter 1st Number : 10
Enter 2nd Number : 15
Enter 3rd Number : 25
c is greater

O Type here to search

ENG 431PM
N 4/9720;

£ Ame

Conditional Statement

Statement And Description (Contd..)

(& et

File Edit Fomat Run Options Window Help

a=int (input ("Enter 1lst Number :
b=int (input ("Enter 2nd Number :
c=int (input ("Enter 3rd Number :

if(a>b)and(a>c):
print("a is greater")
elif (b<a)and (b<c):
print("b is greater")
else:
print("c is greater")

|l))
H))
|l))

edunet

foundation

|8 Python 3.8.0 Shell
File Edit Shell Debug Options Window Help

Intel)] on win32
>>>

Enter 1st Number : 10
Enter 2nd Number : 15
Enter 3rd Number : 25
c is greater

> |

o Type here to search

Python 3.8.0 (tags/v3.8.0:£fa919fd, Oct 14 2019, 19:21:23)

o

[MSC v.1916 32 bit (

L A@m

Type "help", "copyright", "credits" or "license()" for more information.

ENG 431PM
IN 4/9/2020

7

edunet

foundation

Conditional Statement

Fig: else-if ladder

Statement And Description (Contd..)

T

e Nested if...else statement-
We can write an entire if..else statement in

another if..else statement called nesting, True - l

Statement-s

and the statement is called nested if. ——
In a nested if construct, you can have an _

if..elif..else construct inside an if..elif..Else ’
construct.

l Next Statement

Image Source: https://images.app.goo.gllyeUcQAudRfaBz9XC9

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/yeUcQAudRfaBz9XC9

e d U QHQOHT

Conditional Statement

Statement And Description (Contd..)

Fig: else-if ladder

False

False

If expressionl:
statement(s)
If expression2:

statement(s) e True Trae l
Elif expression3: !
Statement-1 Statement-s
statement(s) ’_ === & -’
Else: l Next Statement
statement(s)

Image Source: https://images.app.goo.gllyeUcQAudRfaBz9XC9

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/yeUcQAudRfaBz9XC9

Conditional Statement

Statement And Description (Contd..)

e Example Program-
num = -99
if num > O:
print("Positive Number")
else:
print("Negative Number")
#nested if
if -99<=num:
print("Two digit Negative Number")

ed uggj

&
File Edit Format Run Options Windo Help
num = -99
if num > O0:
print ("Positive Number")
else:

print ("Negative Number")
#nested if
if -99<=num:
print ("Two digit Negative Number")

[& Python 3.8.0 Shell - o
File Edit

il Edit Shell Debug Options Window Help
Python 3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:21:23) [MSC v.1916 32 bit (
Intel)] on win32

Type "help", "copyright", '"credits" or "license()" for more information.
>>>

Negative Number

Two digit Negative Number
>>> |

H O Type here to search

X

Conditional Statement

Single Statement Suites

If the suite of an if clause
consists only of a single line, it
may go on the same line as the
header statement.

Here is an example of a one-
line if clause -

edunet

]

var = 100
f (var == 100) : print ("Value of expression is 100")
print ("Good bye!")

& Python 380 Shell - O
File Edit Shell Debug Options Window Help

Python 3.8.0 (tags/v3.8.0:fa919fd; Oct 14 20194 19:21:23) [MSCG ¥.1¢
16 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license ()" for more inform:
tion.

>>>

==== RESTART: C:/Python/Python38-32/edunet/waiting for user.py ==-
Value of expression is 100

Good bye!

>>> |

o - NG T30AM
HOTypeheretosear(h =] 9) E & B B £ A me) 4/;/2010 B

Looping

<_condition

edunet

foundation

A

1

Loop Body

v

if condition is true

=
P
-
&
if condition
is false

Image Source: https://images.app.qo0.gl/4ARUMgV2539YMXMOQN7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/4RUMqV2539YMXMQN7

Looping

Loop Types and Description

The first statement in a function is
executed first, followed by the second,
and so on.

. There may be a situation when you
need to execute a block of code several
number of times.

A loop statement allows us to execute a
statement or group of statements
multiple times.

The following diagram illustrates a loop
statement —

foundation

A

1

Loop Body

if condition is true

Ccondition
if condition
is false

Image Source: https://images.app.qo0.gl/4ARUMgV2539YMXMOQN7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/4RUMqV2539YMXMQN7

Looping

Loop Structure

Program statement are executed
sequentially one after another. In
some situations, a block of code
needs of times.

These are repetitive program
codes, the computers have to
perform to complete task,

ed U Qngo!-
E—— |nitialization

False
Decrement

l True
Statement

Image Source: https://images.app.qoo.gl/h1FgsJh22U9bw7YR9

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/h1FgsJh22U9bw7YR9

Looping

Loop Structure (Contd..)

The following are the loop

structures available in Python.

While Statement
For loop Statement
Nested Loop Statement

ed U !:u]ngo!-
E—— |nitialization

False
Decrement

l True
Statement

Image Source: https://images.app.qoo.gl/h1FgsJh22U9bw7YR9

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/h1FgsJh22U9bw7YR9

Looping
While Loop

A while loop statement in Python
programming language repeatedly
executes a target statement as long as
a given condition is true.
It test the condition before executing
the loop body.
Syntax -
While expression:

Statements(s)

eduggj

Enter while loop

h 4

Test - False .

Expression

Trus

!

Body of
wwhile

Exit loop |

Fig: operation of while lcoop

Image Source: https://images.app.goo.gl/TYVIXYyhmei968UR7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/TYVJXYyhmei968UR7

Looping

While Loop (Contd..)

e Example Program-
count=0
while(count<5):
print(“The count is:”,count)
count=count+1

edunet

foundation

9
(& sing g
File Edit Format Run Options Window Help

count = 0
=~ (count < 5):
print ('The count is:', count)
count = count + 1

[Python .20 hell - o X
File Edit Shell Debug Options Window Help

Python 3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:21:23) [MSC v.19
16 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license()" for more informa
tion.

The count is: 0
The count is:
The count is:
The count is:
The count is:
Good bye!

>>> |

o Z NG 1:58AM
HOTypeheretosearch IR B 9 B 9 E & b £ oAm) S om B

MBS, A AT B

Looping
For Loop

Executes a sequence of

statements multiple times and

abbreviates the code that

manages the loop variable.

Syntax-

for iterating_var in sequence:
statements(s)

edunet

Last item
reached?
——t Statements
4 "
b

Image Source: https://images.app.goo.gl/jkyK204AgeCqgvGmh7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/jkyK2o4AqeCqvGmh7

Looping

For Loop (Contd..)

Example Program-

fruits=[“apple
For x in fruits:
print(x)

”nn

banana

»nn
Hl

cherry’]

edunet

foundation
B
File Edit Format Run Options Window Help
|fruits = ["apple", "banana", "cherry"]
|EQE X FEIITS ¢
print (x)
& Python 380 Shell = O

File Edit Shell Debug Options Window Help

Python 3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:21:23) [MSC v.1¢
16 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license()" for more informs:
tion.

apple
banana
cherrﬂ
>

4 ENG 211AM
H O Type here to search i £ Ame S e T

edunet

Looping

Test Expression

Nested test expression

Nested Loop

False

e YOou can use one or more loop inside

any another while, for or do..while ek afeisilll) | FarRERap e
loop. & !
e Anested loop is a loop inside a loop.
e The "inner loop" will be executed one b
time for each iteration of the "outer l
loop".

Image Source: https://images.app.goo.gl/4elecHdCRFYfqj6z7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/4e1ecHdCRFYfqj6z7

Loop

Nested Loop (Contd..)

Ing

Example Program-
adj=[“red”,”big”]

fruits=[“apple’,
For x in ad;:

banana”]

For y in fruits:

print(x,y)

edunet

foundation

&

Fle Edit Fomat Run Options Qm: Help
lad] = ["red®, "big"]
fruits = ["apple", "banana"]

for x in adj:
for y in fruits:
print (x, y)

8 Python 380 Shell - 0
File Edt Shell Debug Options Window Help

Python 3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:21:23) [MSC v.1¢
16 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license()" for more inform:
tion.

red apple
red banana
big apple
big banana

HOTypeheremsearch i m 9 B ('S] E & b B £ Amq MO 2I6AM

US 4/6/2020 E‘

e d U QHEOI

Loop Control Statements

break statement

Control Statement

continue statement

J— pass statement
o

Image Source: https://images.app.qoo.gl/naAsWZSy7bGzRCVo8

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/naAsWZSy7bGzRCVo8

e d U Qngoj

Control Statement

Loop Control Statement

e Loop control statements change Loop Control Statements
execution from its normal sequence.

e \When execution leaves a scope, all
automatic objects that were created in
that scope are destroyed

e Python supports the following control =
statements. pass statement

Break Statement oo
Continue Statement |
Pass Statement

Image Source: https://images.app.goo.al/naAsWZSy7bGzRCVo8

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/naAsWZSy7bGzRCVo8

Control Statement

Break Statement

Terminates the loop statement
and transfers execution to the
statement immediately
following the loop.

If break statement inside a
nested loop (loop inside
another loop), break will
terminate the innermost loop.

Enter loop

test expression
of loop

‘ Remaining body
of loop

v

edunet

Exit Loop

Image Source: https://images.app.goo.gl/IXcQIhxUkA1Z4qiy9

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/JXcQJhxUkA1Z4qiy9

Control Statement
Break Statement (Contd..)

e Example Program-

For num in[11, 9, 88, 10, 90, 3, 19]:
print(num)
if(num==88):
print(“The number 88 is found”)
print(“Terminating the loop”)
Break

edunet

C)
num (11, 9, 88, 10, 90, 3; 19]:
print (num)
(num==88) :
print ("1 1mk f 1id")
print ("Termir ng the p")
3 Pyien 1.0 S

Fle B Owt Debug Optoms Wndew Help
|Python 3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:21:23) [MSC v.19
16 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license()" for more informa

(tion.

RESTART: C:/Python/Python38-32/edunet/single.py
11

(
v |

|The number 88 is found
|Terminating the loop

.

Control Statement

Continue Statement

Causes the loop to skip the
remainder of its body and
immediately retest its condition
prior to reiterating.

The continue statement can be

used in both while and for loops.

ed uggj

conditional

code

If condition
is true

condition

If condition
is faise

Image Source: https://images.app.qoo.gl/LgptGF2grWpkdgqWw6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/LqptGF2grWpkdqWw6

edunet

foundation

Control Statement y
num [20, 11, 9, 66, 4, 89, 44]:
Skipping the iteration when number is even
num3%2 == 0:

Continue Statement (Contd..)

This statement will be skipped for

print (num)

& e 1009t
R G0 Ol Debop Opbirs Winkw el

[) Example Program- Python 3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:21:23) [MSC v.19
16 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license()" for more informa

tion.

e Fornumin[20, 11, 9, 66, 4, 89, 44]. >>>
==== RESTART: C:/Python/Python38-32/edunet/single.py =========

If num%2==0: —
continue e

print(num) [[op—

Control Statement

Pass Statement

The pass statement in Python is used
when a statement is required syntactically
but you do not want any command or code
to execute.

The interpreter does not ignore a pass
statement, but nothing happens and the
statement results into no operation.

ed uggj

Enter loop

w

. False
- Condition
True
4
Pass e -
No
.
Body of v
loop Exit loop

Image Source: https://images.app.goo.gl/Z9BnvaYpSLpGG6G86

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/Z9BnvaYpSLpGG6G86

Control Statement

Pass Statement (Contd..)

e Example Program-

For numin [20, 11, 9, 66, 89, 44]:
If num%2==0:
Pass

else:
print(num)

edunet

foundation

num [20, 11, 9, 66, 4, 89, 44]:
num%2 == 0:

print (num)

Py
Python 3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:21:23) [MSC v.19
16 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license()" for more informa

tion.

>>>

******** RESTART: C:/Python/Python38-32/edunet/single.py =========
11

9

89

>>> |

String Manipulation

edunet

str = "HELLO"

H E L L o

0 1 3 4
str[0] = 'H’ str[:] = '"HELLO’
str[1] = 'E’ str[0:] = '"HELLO'
str[2] = str[:5] = '"HELLO"
str[3] = str[:3] = '"HEL"
str[4] = str[0:2] =

str[1:4] = 'ELL"

Image Source: https://static.javatpoint.com/python/images/strings-

indexing-and-splitting2.png

https://static.javatpoint.com/python/images/strings-indexing-and-splitting2.png
https://static.javatpoint.com/python/images/strings-indexing-and-splitting2.png

foundation

str = "HELLO"
String Manipulation

Introduction o 4 2 3 x

Python string is an ordered collection of str[0] ="H’ str:] = "HELLO’
characters which is used to represent and

_ _ str[1] = 'E’ str[0:] = '"HELLO®
store the text-based information.

Strings are stored as individual characters str[2] = 'L’ str[:5] = '"HELLO"
in a contiguous memory location.
It can be accessed from both directions: str[3] =L str[:3] = 'HEL’

forward and backward.

Characters are nothing but symbols.
Strings are immutable, which means that str[1:4] = 'ELL’

once a string is created, they cannot be

str[4] ='O" str[0:2] = 'HE'

changed. Image Source: https:/static.javatpoint.com/python/images/strings-
indexing-and-splitting2.png

https://static.javatpoint.com/python/images/strings-indexing-and-splitting2.png
https://static.javatpoint.com/python/images/strings-indexing-and-splitting2.png

String Manipulation

Create Strings

Strings can be created by enclosing
characters inside a single quote or
double-quotes.

Even triple quotes can be used in
Python but generally used to represent
multiline strings and docstrings.

edunet

Python string examples - all assignments
String var =
String var = ;

String var

with Triple quotes Strings can exten multi
String var = is d pent will he 0
Replace "document" with "tutorial" and store i

substr var = String var.replace ("document"

print [subst:_var)

ple lines
n another variable
ial")

String Manipulation

Index and Slice - Indexing

Python allows to index from the "
position in Strings. But it also
supports negative indexes.

Index of -1’ represents the last
character of the String.

Similarly, using ‘-2’, we can access
the penultimate element of the string
and so on.

0 | 1|2 |3 |4|5|6|7]|8]|09

edunet

| # output: P

Image Source :

(43 |42 | 1|0 9]8|7|6|5 432
;sample_str = 'Python String'
;p:::t (sample stri0]) # return 1lst character

| print (sample str[-1]) # return last character
| # output: g

| print (sample str[-2]) # return last second cha
| # output: n

https://cdn.techbeamers.com/wp-content/uploads/2016/03/String-

Representation-in- Python.png

https://cdn.techbeamers.com/wp-content/uploads/2016/03/String-Representation-in-%20%20Python.png
https://cdn.techbeamers.com/wp-content/uploads/2016/03/String-Representation-in-%20%20Python.png

String Manipulation

Index and Slice - Slicing

To retrieve a range of characters in
a String, we use ‘slicing operator,’
the colon " sign.

With the slicing operator, we define
the range as [a:b].

Let us print all the characters of the
String starting from index ‘a’ up to
char at index ‘b-1'. So the char at
index ‘b’ is not a part of the output.

edunet

o | 1|23 |4ls5|6|7]8]|9|10|n]12
‘-13”-12‘-11-10!-9’-8-7}-6!-5’-(-3‘-2‘-1

| sample str = 'Python String'

| pxint (sample str[3:5]) #return a range of character

| # ho

| print (sample str[7:]) # return all characters from index 7

| # String

| pxrint (sample str{:6]) # return all characters before index 6
| # Python

| print (sample str[7:-4])

|# St

Image Source :
https://cdn.techbeamers.com/wp-content/uploads/2016/03/String-

Representation-in- Python.png

https://cdn.techbeamers.com/wp-content/uploads/2016/03/String-Representation-in-%20%20Python.png
https://cdn.techbeamers.com/wp-content/uploads/2016/03/String-Representation-in-%20%20Python.png

String Manipulation

Modify/Delete Strings

Python Strings are by design immutable. It
suggests that once a String binds to a
variable, it can’t be modified.

If you want to update the String, then re-
assign a new String value to the same
variable.

We cannot delete or remove characters
from a string. But deleting the string
entirely is possible using the keyword del.

sample str = 'Python String'
sample str[2] =

TypeExrror: '

€3 not support
sample str = 'Programming String'

print (sample str)

sample str = "Python is the best scripting
il sample strl]

TypeError: 'str' «

i=l sample str
print (sample str)
NameError:

name 'sanmple str' is

not defin

ed uggj

item assignment

ed

String Manipulation

String Operators

There are many operations that can
be performed with string

| Concatenation (+)

edunet

foundation

It combines two strings into one.

|Repetition (*)

This operator creates a new string by
repeating it a given number of times.

|Slicing []

The slice operator prints the character at a
given index.

|Range Slicing [x:y]

It prints the characters present in the given
range.

: Membership (in)

This operator returns ‘True’ value if the
character is present in the given String.

'Membership (not in)

It returns ‘True’ value if the character is not
present in the given String

|Iterating (for)

With this operator, we can iterate through all
the characters of a string.

Raw String (r/R)

We can use it to ignore the actual meaning of
Escape characters inside a string. For this,
we add ‘r’ or ‘R’ in front of the String.

Image Source : https://www.programiz.com/python-programming

http://www.programiz.com/python-programming

String Manipulation

String Formatting Operators

An Escape sequence starts with a
backslash (\), which signals the
compiler to treat it differently.
Python subsystem automatically
interprets an escape sequence
irrespective of it is in a single-
guoted or double-quoted Strings.

edunet

Escape Char Name
Backslash (1)

Double-quote ()

\a ASCII bell (BEL)
\b ASCI| backspace (BS)
\cx or \Cx Control-x
\f ASCIl Form feed (FF)
\n ASCII linefeed (LF)
\N{name} Character named name in the Unicode database (Unicode only)
\r Carriage Return (CR)
\t Horizontal Tab (TAB)
\UXXXX A character with 16-bit hex value xxxx (Unicode only)
\UDOOOOOOeK A character with 32-bit hex value xxxxxxxx (Unicode only)
\" ASCI! vertical tab (VT)
\ooo Characters with octal value ocoo

Image Source:
https://www.techbeamers.com/python-strings-functions-and-
examples/#strin_g-formatting-operators-in-python

https://www.techbeamers.com/python-strings-functions-and-examples/
https://www.techbeamers.com/python-strings-functions-and-examples/

String Manipulation

String Formatting Operators

Python Format Characters

String ‘%’ operator issued for
formatting Strings. We often use
this operator with the print()
function.

print ("Emploc

-
L
-
"

%e

%f

%G

Image Source:

Conversion
character
string conversion via str() before formatting
signed decimal integer
signed decimal integer
unsigned decimal integer
octal integer
hexadecimal integer (lowercase letters)
hexadecimal integer (UPPER-case letters)
exponential notation (with lowercase ‘e’)
exponential notation (with UPPER-case 'E’")
floating-point real number
the shorter of %f and %e

the shorter of %f and %E

edunet

foundation

yee Name: %s,\nEmployee Age:%d"™ % ('Alex',25))

https://www.techbeamers.com/python-strings-functions-and-

examples/#strin_g-formatting-operators-in-python

https://www.techbeamers.com/python-strings-functions-and-examples/
https://www.techbeamers.com/python-strings-functions-and-examples/

edunet

String Manipulation

Unicode String support

e Regular Strings stores as the 8-bit ASCII
value, whereas Unicode String follows print (u' Hello Pychon!!')
the 16-bit ASCII standard.
e This extension allows the strings to
include characters from the different
languages of the world.
e In Python, the letter ‘U’ works as a prefix
to distinguish between Unicode and
usual strings.

String Manipulation

Built-in String Functions

Conversion Functions
Comparison Functions
Padding Functions

Search Functions

String Substitution Functions
Misc String Functions

For more information and all functions check this link

https://docs.python.org/2/library/string.html

edum§j

https://docs.python.org/2/library/string.html

edunet

String Manipulation

Regular Expressions

e A RegEx, or Regular Expression, is a g 15:“(-
sequence of characters that forms a
search pattern.
e RegEx can be used to check if a string
contains the specified search pattern.
e Python has a built-in package called re,
which can be used to work with Regular
Expressions.

edunet

foundation

empty list
my list = []

list of integers
my_list = FLyi2y031

list with mixed datatypes
my list = [1, "Hello", 3.4]

L-IE;t # nested list - Also, a list can even have another list as an item.
This is called nested list.
my list = ["mouse", [8, 4, 6], ['a'll]

List

Python List & Create List

In Python programming, a list is
created Dby placing all the items
(elements) inside a square bracket
[], separated by commas.

It can have any number of items
and they may be of different types
(integer, float, string etc.).

empty list
my list = []

list of integers

my list = [1, 2, 3]

list with mixed datat

my list = [1, "Hello

nested list - Also,
This is called nested

my list = ["mouse", [8,

ypes

", 3.4]

a2 list can

list.
4, ©],

[fa’

11

vEeEnNn nawv

e

another

list as an

foundation

item.

edunet

foundation

One-dimensional Lists in Python:

init list = [@]*2
List print(init list)
Output:
[e, e, e]
Creating Multi-dimensional Lists Toodimerisiial fasts i Pythomn:

two_dim_1list = [[©]*3] *3
print{two_dim list)

Output:

[[e, e,], [e, o, ©], [0, O, ©]]

e A list can hold other lists as well Three-dimensional Lists in Python:
two_dim_list = [[[©]%3] *3]1*3
which can result in multi- SELNE (i a i T SE)
dimensional lists. Output:
[[[e., ©,], [e, o, e], [@, @, ©]1,
[[e, o,], [e, ©, o], [e, e, @]1,
[[e. o, ©], [e, ©, e], [e, o, ©]]]

Image Source : https://intellipaat.com/blog/tutorial/python-
tutorial/python-lists/

https://intellipaat.com/blog/tutorial/python-tutorial/python-lists/
https://intellipaat.com/blog/tutorial/python-tutorial/python-lists/

List

Access elements from a list List
Indexing

Index operator : The simplest one is to
use the index operator ([]) to access an
element from the list. Since the list has
zero as the first index, so a list of size ten
will have indices from 0 to 9.

Any attempt to access an item beyond
this range would result in an IndexError.
The index is always an integer.

Using any other type of value will lead to
TypeError.

vowels = ['a','e','i','0"', "u']

consonants = ['b', 'c¢', '4', 'f', 'g', 'n', 'j', 'k’
R A '

#Accessing list elements using the index operator

print (vowels[0])
print (vowels[2])
print (vowels[4])

#Testing exception if the index is of float type
vowels[1.0]
except. EXxception as ex:

print ("Note:", ex)

#4ccessing elements from the nested list

alphabets = [vowels, consonants]

print (alphabets[0][2])
print (alphabets[1l][2])

List

Access elements from a list
Reverse/Negative indexing

Reverse indexing : Python enables
reverse (Negative) indexing for the
sequence data type. So, for the Python
list to index in the opposite order, you
need to set the index using the minus (-)
sign. Indexing the list with “-1” will return
the last element of the list, -2 the second
last and so on.

yyyyyyyyyyyyyyyy

rint (vowels[-3])

edunet

ed uggj

List

#The Python slicing operator syntax
. .. [start (optional) :stop(optional) :step(optional))
List slicing

Say size => Total no. of elements the list.

Start (x) ->
It is the point (xth list index) where the slicing begins.

® Python comes with a magica| slice 0 =< x < size, By default included in the slice output)
operator which returns the part of o el it T
It 1z the point (y-1 list index) where the slicing ends.
El ESEE(][JEBT1(3(3. 0 < y <= size, The element at the yth index doesn't appear in the slice output
o It Operates On ObJeCtS Of dlﬂ:erent data Steplt(S), _ihe counter by which the index gets incremented to return the next element.
types such as strings, tuples, and S
works the same on a Python list.

List

Change or Add elements

List are mutable, meaning, their
elements can be changed unlike string or
tuple.

We can use assignment operator (=) to
change an item or a range of items.

We can also use + operator to combine
two lists. This is also called
concatenation.

The * operator repeats a list for the
given number of times.

ed uggj

append() - Add an element to the end of the list

extend() - Add all elements of a list to the another list

insert() - Insert an item at the defined index

remove() - Removes an item from the list

pop() - Removes and returns an element at the given index

clear() - Removes all items from the list

index() - Returns the index of the first matched item

count() - Returns the count of number of items passed as an argument
sort() - Sort items in a list in ascending order

reverse() - Reverse the order of items in the list

copy() - Returns a shallow copy of the list

Image Source: https://www.programiz.com/python-
programming

http://www.programiz.com/python-programming
http://www.programiz.com/python-programming

List

Elegant way to create new List

List comprehension is an elegant and
concise way to create a new list from an
existing list in Python.
List comprehension
expression followed by for
inside square brackets.

A list comprehension can optionally
contain more for or if statements.

An optional if statement can filter out
items for the new list.

consists of an
statement

We can test if an item exists in a list or not,
using the keyword in.

foundation

pow2 = [2 ** x] X 3 range (10)]
print (pow2)

my s YISEC= [Pty M N Wb 1 ety i)
print('p’ my list)

print('a’ my list)

print('c’ my list)

Iterating Through a List

Usinga for loop we can iterate though each item in a list.

for fruit in ['apple’,'banana‘, ‘mango']:
print("I like",fruit)

Image Source: https://www.programiz.com/python-programming

http://www.programiz.com/python-programming

Tuple

edunet

foundation

Empty tuple
my tuple = ()
print (my_tuple) # Output:

Tuple having integers
my tuple = (1, 2, 3)
print (my_tuple) # Output:

(1, 2, 3}

tuple with mixed datatypes
my tuple = (1, "Hello", 3.4)

print (my_tuple) # Output:

nested tuple

my tuple = ("mouses", [8, 4,

Output: ("mouse", [8, 4,
print (my_tuple)

(1, M™Hello®™, 3.9}

€1, (1, 2, 3))

€1, (1, 2, 3))

edunet

Tuple

Tuple & Create Tuple § Empty tuple
my tuple = ()
print (my_tuple) # Output: ()

- having intecers

e A tuple in Python is similar to a list. The J.yi;i;ie":?ff s
difference between the two is that we print(my_tuple) # Output: (1, 2, 3)
cannot change the elements of a tuple # tuple with mixed datatypes
once it is assigned whereas, in a list, Irr‘tific_;élc)qi“ "Hello®, 3.4)
elements can be changed. $ nested tuple

e A tuple is created by placing all the items .. inieasiinsamaidie et e
(elements) inside parentheses (), separated
by commas.

e A tuple can have any number of items and
they may be of different types (integer,

float, list, string, etc.).

m

Output: ("mouse"™, [8, 4, €], (1, 2, 3})

print (my_tuple)

Tuple

Access Tuple Elements

Indexing - We can use the index operator []
to access an item in a tuple where the
index starts from 0.

So, a tuple having 6 elements will have
indices from O to 5. Trying to access an
element outside of tuple (for example, 6,
7,...) will raise an IndexError.

The index must be an integer; so we
cannot use float or other types. This will
result in TypeError.

print (my tuple[0])
print (my tuple([S])

4
i
T
]
1
1
Q,
ct
5
-
I
i

n tuple = ("mouse",

nested index
print (n_tuple[0] [3])
print(n_tuple[l][1])

edunet

Tuple

Access Tuple Elements

Python allows negative indexing
for its sequences.

The index of -1 refers to the last
item, -2 to the second last item
and so on.

foundation

edunet

Tuple

IT.y_t‘Jple . (v_-:‘,v:v'-:vl";.u,v:\'v‘il,-!.E.in'l.-),vzl)

Access Tuple Elements i G, e,
P

print (my_ tuple[l:4])

elements beginning to 2nd
#

e We can access a range of items in a b e beginnin
tuple by using the slicing operator - gzil—fi‘?;ifj.;-ipi;{:_i]i
colon ":". # elements Sth to end
e Slicing can be best visualized by Sit s Raiitiih,
considering the index to be between the $ elements beginning to end
elements as shown below. SO if We Want — peeacimy sopieey | T e
to access a range, we need the index

that will slice the portion from the tuple.

N

Tuple

Performing Operations Modifying, Deleting

e Tuple cannot be changed once it has

e Dbeen assigned.

e the element is itself a mutable datatype
like list, its nested items can be changed.
e + operator to combine two tuples

e repeat the elements in a tuple for a given
number of times using

e the * operator.

e Cannot delete or remove items from a
tuple.

e Deleting a tuple entirely is possible

ed uggj

#Modifiy / Change

my tuple = (4, 2, 3, [6, 5])
TypeErrox: 'tuple' object does not support item assignment

-

-

- .r
* Iy
£ B
*

g
How of mutable element can be changed
ry tuple[3][0] = 9 # Output: (4; 2, 3, [9, 5])

print (my_ tuple)
Tuples can be reassigned

my tuple = ('p','x','o','g','x','a', 'm')

ity SEE) [Py ! LI L LIF LN L | L} L
gutput: ('Y EEly Moly bgl; REby Atz gl)

-
™
print (my tuple)

Delete

=]
3
ot
o
o
ot
f

e = ('p','r','o",'g','r",'a', 'm')
by Sy Sy Yy Sy iy Nk

can't delete items

TypeErroxr: 'tuple' object doesn't support item deletion
del my tuple[3]

Can delete an entire tuple

=1 my tuple
NameError: name 'my

print (my_tuple)

Function & Methods

edunet

foundation

Associated with Objects. Not associated with any objects

Cannot invoke by its name. Caninvoke by its name.

Independent.

Dependent on class.

Do not require 'self .

Require 'self '

Image source: https://techvidvan.com/tutorials/python-methods-vs-
functions/

https://techvidvan.com/tutorials/python-methods-vs-functions/
https://techvidvan.com/tutorials/python-methods-vs-functions/

Function & Methods

Why functions required??

Functions in Python are a set of related
statements grouped together to carry out
a specific task.

Including functions in our program helps in
making it much more organized and
manageable.

Especially, if we are working on a large
program, having smaller and modular
chunks of code blocks will increase the
readability of the code along with providing
it reusability.

edunet

Not associated with any objects
Can invoke by its name.
Independent.

Do not require 'self *

Image source: https://techvidvan.com/tutorials/python-methods-vs-
functions/

https://techvidvan.com/tutorials/python-methods-vs-functions/
https://techvidvan.com/tutorials/python-methods-vs-functions/

Function & Methods

Create & Def Statement

The def keyword is used to start the
function definition.

The def keyword is followed by a function-
name which is followed by parentheses
containing the arguments passed by the
user and a colon at the end.

After adding the colon, the body of the
function starts with an indented block in a
new line.

The return statement sends a result
object back to the caller.

foundation

Syntax for writing a function in Python
def (argl, arg2, .. argh):

return

Image Source : https://intellipaat.com/blog/tutorial/python-
tutorial/python-functions/

https://intellipaat.com/blog/tutorial/python-tutorial/python-functions/
https://intellipaat.com/blog/tutorial/python-tutorial/python-functions/

edunet

Function & Methods

Calling a Function i=f greet (name) :

"Thie Fiancrtrimonm Nreste +MA
the nerson rasssed in
. PEXISOnN passed 1in

parametexr""”

print ("Hellc, " + name + ". Good morning!")
#Call function

greet ('Bython')

e To call a function we simply type the
. . . Foutput
funCUOn name W|th approprlate # Hello, Python. Good morning!
parameters.

Function & Methods

Function works & Types

Basically, we can divide functions into
the following two types:

Built-in functions - Functions that are
built into Python.

User-defined functions - Functions
defined by the users themselves

foundation

def functionName():
. —

functionName();

Image Source: https://www.programiz.com/python-programming

http://www.programiz.com/python-programming

edunet

Function & Methods

Arguments

def my function (fname) :
print (fname + » Names”)

my function (“Alex”)

my function (“Boob”)
my function (“XYZ”)

e Define a function that takes
variable number of arguments.

Function & Methods

Global, Local and Nonlocal

Global variable can be accessed
inside or outside of the function.
A variable declared inside the
function's body or in the local

scope is known as local variable.

¥Using Global and
X = 1 im
foo ()
x
yv:-= "local
X =x * 2
print (x)
print (vy)
foo ()

foundation

Function & Methods

Global, Local and Nonlocal

Nonlocal variable are used in nested function
whose local scope is not defined. This
means, the variable can be neither in the
local nor the global scope.

We use nonlocal keyword to create nonlocal
variable.

In Python, global keyword allows you to
modify the variable outside of the current
scope.

It is used to create a global variable and
make changes to the variable in a local
context.

edunet

: X
X = nlocal
print ("innerxr:", x)
inner ()
print ("outexr:", X)
outex ()
#Create a global variable
c = 0 # global variable
def add()
bal c
C=c + 2 # increment by 2
print ("Inside {)=",; c)
add ()
print ("In main: v C)

edunet

Function & Methods

#Syntax of retuxrn:
» [expression list]

Return statement oiias o il
#Example for rturn code
def absolute_wvalue (num) :

This function returns the solute
= - - =t it amrvard Mk e v
valuyue OI THe entered nNUumbeXx

if num >= 0:
recurn num

e return statement is used to exit a return -num

-

Output: 2

function and go back to the place print (absolute_value(2))
from where it was called. $ Output: 4

print (absolute_value (-4))

Function & Methods

Scope and Lifetime of variables

Scope of a variable is the portion of a
program where the variable is recognized.
Parameters and variables defined inside a
function is not visible from outside. Hence,
they have a local scope.

Lifetime of a variable is the period
throughout which the variable exits in the
memory. The lifetime of variables inside a
function is as long as the function
executes.

They are destroyed once we return from
the function.

print ("Value inside func

my func():
X =10
x = 20
my func()

print ("Value outside function:"

P %)

edunet

”,x)

Function & Methods

Functions as Objects

Python treats everything as an
object and functions are no
different

#Python Functions as Objects

. testFunc(a, b)
fn = testFunc

fn(22, 'bb'

)

edunet

! print('testFunc called!

Function & Methods

Function Attributes

Python functions also have attributes.
You can list them via the dir() built-in
function.

The attributes can be system-defined.
Some of them can be user-defined as
well.

The dir() function also lists the user-
defined attributes.

#Function Attributes

ef testFunc():

print ("I'm just a test T

testFunc.attrl
testFunc.attr2 5
testFunc()

print (dir (testFunc))

foundation

Dictionary

edunet

foundation

empty dictionary
my dict = {}

dictionary with integer keys
my dict = {1: 'apple', 2: 'ball'}

dictionary with mixed keys
my dict = {'name': 'John', 1: [2, 4, 31}

using dict()
my dict = dict({1l:'apple', 2:'ball'})

from seguence having each item as a pair
my dict = dict([(1, 'apple'), (2,'ball')])

Dictionary

Create a Dictionary

Python dictionary is an unordered
collection of items. While other
compound data types have only value as
an element, a dictionary has a key: value
pair.

Dictionaries are optimized to retrieve
values when the key is known.

ed uggj

empty dictionary
my dict = {}

dictionary with integer keys
- i
dictionary with mixed keys
my_dict = {'name': 'John', 1: [2, 4, 31}

using dict ()
my dict = dict({1l:'apple', 2:'ball'})

from seguence having each item as a pair
my dict = dict([(1, 'apple'), (2,'ball')])

Dictionary

Create a Dictionary

Creating a dictionary is as simple as placing
items inside curly braces {} separated by
comma.

An item has a key and the corresponding
value expressed as a pair, key: value.
While values can be of any data type and
can repeat, keys must be of immutable type
(string, number or tuple with immutable
elements) and must be unique.

we can also create a dictionary using -

edunet

empty dictionary

my dict = {}

dictionary s

=
my dict = {1l: 'apple', 2:

with integer keys
~ §

dictionary with mixed keys

my dict = {'name': 'John', 1: [2, 4, 3]}

using dict ()
my dict = dict({1l:'apple', 2:'ball'})

from seguence having each item as a pair
my dict = dict([(1, 'apple'), (2,'ball')])

Dictionary

Access elements from a dictionary

While indexing is used with other
container types to access values,
dictionary uses keys. Key can be used
either inside square brackets or with the
get() method.

The difference while using get() is that it
returns None instead of KeyError, if the
key is not found.

my dict = {'name':'Jack', 'age': 26}

Output: Jack

print (my dict['name'])

Output: 26
rint (my dict.get('age'))

o]

my dict.get('address')

my dict['address']

= =M= ==

Trying to access keys which doesn'

-

L

edunet

exist throw

m

~

[

Dictionary

Change or Add elements

Dictionary are mutable. We can add new
items or change the value of existing
items using assignment operator.

If the key is already present, value gets
updated, else a new key: value pair is
added to the dictionary.

edunet

my dict = {'name':'Jack', 'age': 26}

update value
my dict['age'] = 27
#Output: {'age': 27, 'name':

print (my dict)

'Jack'}

add item
L IO wm—— -

my dict['address'] = 'Downtown'

Output: {'address': 7

print (my dict)

'Downtown', 'age': 27, 'name':

'Jack'}

Dictionary

Delete or Remove elements

We can remove a particular item in a
dictionary by using the method pop(). This
method removes as item with the provided
key and returns the value.

The method, popitem() can be used to
remove and return an arbitrary item (key,
value) form the dictionary. All the items can
be removed at once using the clear()
method.

We can also use the del keyword to remove
individual items or the entire dictionary
itself.

create a dictionary
squares = {1:1,

= =

Output: 16

e

Output: {1:
print (squares)

k=

T_"
Output: (1,

-~ r

1)

Dieds,. 39,
remove a particular item

rint (squares.pop (4))

A s

f remove an arbitrary item

print (squares.popitem())

output: {2:
print (squares)

=1

-1 sguares[5]

~

Output: {2:
print (squares)

4,

delete a partic

4,

2.
-~

u

w
"

Q =
“r .-
lar item

S}

4:16,

G
P

Es

o

edunet
Dictionary

Example for use dictionary methods

Common Python Dictionary Methods

marks = {}.fromkeys(['Math', 'English’, 'Science'], 0)
Output: {'English': 0, 'Math': 0, 'Science': 0}
print (marks)
for item in marks.items():

print (item)
Output: ['English', 'Math', 'Science']

list (sorted (marks.keys()))

e Refer this link for more information

e https://docs.python.org/3/tutorial/d
atastr uctures.html

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html

Functions

Built-in Functions Dictionary

e Built-in functions like all(), any(), len(),
cmp(), sorted() etc. are commonly used
with dictionary to perform different tasks.

[45]

edunet

yntax

bda argl, arg2, ... argN: expression using arguments

#lambda inside a list

alist = [lambda m:m**2, lambda m,n:m*n, lambda m:m**4]
print (alist[0] (10), alist([1](2, 20), alist[2](3))
Output: 100 40 81

#lambda inside a dictionary

key = 'm'

aDict = {'m': lambds
print (aDict[key] (9))
Output: 18

x:2*x, 'n': lambda x:3*x}

edunet

Functions

bda argl, arg2, ... argN: expression using arguments

Lambda Functions

#lambda inside a list

e Use Def keyword: It creates a function alist = [lambda m:m**2, lambda m,n:m*n, lambda m:m**4]
. . . print (alist[0] (10), alist[1](2, 20), alist[2] (3
object and assigns it to a name. Ly SR < SRS

e Use lambda: It creates an inline function
and returns it as a result.

#lambda inside a dictionary

key = 'm'
aDict = {'m': lambda x:2*x, 'n': lambda x:3*x}

e Alambda function is a lightweight i Sl
anonymous function. It can accept any
number of arguments but can only have a
single expression.

Functions

Use of Lambda Functions

A Lambda function behaves like a regular
function, takes an argument, and returns
a value but is not bound to any name or
identifier. There is no need to use the
return statement in a lambda function in
Python; it will always return the value
obtained by evaluating the lambda
expression in Python

edunet

lambda arg1, ... argN:
expression using arguments

el | T
' e.g. *
v
[lambda m:m**2] [lambda m,n:m*n]
-
~ 1
filter(lambda_function, map(lambda_function,
list) 5 5 list1, list2,...)
- e T en
i 0. v
filter(lambda x: (x in vowels) , map{lambda-x: x'”pp;'i'(s)t)’
alphabets)
reduce(func_obj, reduce((lambda m, n: m + n), [1, 2,
iterable[, initializer]) F 3. 4]

Image Source : https://www.techbeamers.com/python-lambda/

http://www.techbeamers.com/python-lambda/

edunet

Functions lambda arg1, ... argN:

Properties of Lambda Functions EXpression using arguments

Anonymous functions created using the lambda
keyword can have any number of arguments, but
they are syntactically restricted to just one
expression, that is, they can have only one
expression.

' e.g.)
v v

[lambda m:m**2] [lambda m.n:m™n]

o]

Lambda function in Python can be used wherever filter(lambda_function, map(lam:bﬁl:aful?scttzuon;
a function object is required. list) boes
Lambda functions do not require any return HE “ o
statement; they always return a value obtained by fittergambaa x: (x in vowels) , T

. . . alphabets)
evaluating the lambda expression in Python. —
Python Lambda functions are reduce(func_obj, reduce((lambda m, n: m + n), [1, 2,
widely used with some Python built-in function. iterable[, initializer]) P> S, 4]

Image Source : https://www.techbeamers.com/python-lambda/

http://www.techbeamers.com/python-lambda/

Functions

Built in Functions

Map functions over iterables —
map()

Select items in iterables — filter()
Aggregate items in iterables —
reduce()

edunet

foundation

#map ()

Python lambda demo to use map() for adding elements of two lists
alist = ['learn', 'python', 'step', 'by', 'step']

output = list(map(lambda x: x.upper() , alist))

Output: ['LEARN', 'PYTHON',6 'STEP', 'BY', 'STEP']

print (output)

$filter()

Python lambda demo to filter out vowles from a list
alphabats = ["al, %, €% "dl, "efr "E': Yg'y "0l "aH
vowels = ['a'; 'e';, 'i'; 'e'; "u']

output = list(filter(lambda x: (x in vowels) , alphabets))
Output: ['a', 'e', 'i']

print (output)

#reduce ()

from functools import reduce

def fn(m, n) : return m + n

print (reduce((lambda m, n: m + n), [1, 2, 3, 4]))
print (reduce(fn, [1, 2, 3, 4]))

Modules

edunet

Import: Lets a client obtain a module as a
whole

From: Permits a client to fetch particular
names from a module

Reload: Gives a way to reload a code of
module without stopping Python

Modules
What are modules?

In Python, modules are used to divide the
code into smaller parts. In this, we can
group similar data which makes the
program easier to understand.

The module is a simple Python file which
can contain (Python functions, python
variables, python classes) .

Modules are processed with two new
statements and one important built-in
function

edunet

Import: Lets a client obtain a module as a
whole

From: Permits a client to fetch particular
names from a module

Reload: Gives a way to reload a code of
module without stopping Python

edunet

Modules

iImport statement import with renaming

import statement example
to import standard module math
e import statement - We can import a mport math
orint ("The value of pi is"™, math.pi)

module using import statement and
access the definitions inside it using the
dot operator as described rightside. import math as m
e import with renaming- We can import a i
module by renaming it as follows.

Modules

Import modules

We can import the definitions inside a
module to another module or the
interactive interpreter in Python.

We use the import keyword to do this

Python Module example
Let us create a module.

Type

ief add(a, b):

nmn

i
nu

the following and

"Thig D3
-—-) 3

mbers and return the

result = a + b

#To import our

rn result

Let us imort a module.

Type

the following and

pwort example

examp

le.add (4,5.5)

save it as

save 1t as

edunet

example.py

previously defined module example

example import.py

Modules

from...import statement
Import all names

Python from...import statement

We can import specific names from a
module without importing the module
as a whole.

Import all names

We can import all names(definitions)
from a module using the following
construct.

edunet

import only pi from math module
n math import pi
print ("The value of pi is", pi)

import all names from the standard module math

1 math import *
print ("The value of pi is", pi)

foundation

Modules

Module Search Path

While importing a module, Python looks at import sys
several places. Interpreter first looks for a ;

built-in module then (if not found) into a list =[
of directories defined in sys.path. The '\ thon33\ ﬁ_ \saterin,

search is in this order. o 'i;“;.i 'y : i
The current directory. i e

PYTHONPATH (an environment variable 'C:\\Python33\\1lib\\site-packages']
with a list of directory).

The installation-dependent default
directory.

foundation

Modules

Reloading a module

imp

e The Python interpreter imports a module . " roauie
only once during a session. This makes HECR ook 90 BaeEoad
things more efficient. mport my module
. . imp.reload (my module)
e Python provides a neat way of doing SiLis Lo Bob eaiovad
this. We can use the reload() function <module 'my module' from '.\\my module.py'>

inside the imp module to reload a
module.

Modules

dir() built-in function

We can use the dir() function to find out
names that are defined inside a module.

dir (example)

foundation

Modules

Package

Similar, as a directory can contain sub-
directories and files, a Python package
can have sub-packages and modules.
A directory must contain a file

Named init .py in order for Python to
consider it as a package. This file can
be left empty but we generally place the
initialization code for that package in
this file.

Package

Gahw
e
Sound Image
init_.py init_.py
I load.py open.py
play.py change.py
- pause.py close.py

Image Source:https://www.programiz.com/python-

programming/package

edunet

Sub-package

Level
init_.py

1 start.py

| load.py

| over.py

https://www.programiz.com/python-programming/package
https://www.programiz.com/python-programming/package

Modules

Importing module from a package

e We can import modules from
packages using the dot (.)
operator

e For examples : 3 different types of
imports

ed uggj

Tmoort Game.Level.start
Game.Level.start.select difficulty(2)

m Game.Level —moort start
start.select difficulty(2)

from Game.Level.start import select difficulty
select_difficulty(2)

e d U QHQOHT

#Example for Print
print ('This sentence is output to the screen')

Input and Output

#Example for str.format

=5 y=10
print ('The value of x is {} and y is {}'.format(x,y))
toutput

The value of x 15 5 and y 15 10

Input and Output

Output

print() function to output data to the
standard output device (screen).
str.format() method - format our output
to make it look attractive

curly braces {} are used as
placeholders. We can specify the order
in which they are printed by using
numbers (tuple index)

tExample for Print
print ('This sentence is outpu

tExample for str.format

=5 y=10
print ('Th
foutput

D

vaiue O

The value of x ic¢

5 anc

s 10

edunet

v is {}'.format(x,y))

Input and Output

Input

To allow flexibility, we might want to take
the input from the user.

In Python, we have the input() function to
allow this.

To convert this into a number we can use
int() or float() functions.

Above same operation can be performed
using the eval() function. But eval takes it
further.

It can evaluate even expressions, provided
the input is a string

#Syntax for input

input ([prompt])
#It is optional.

#Example

num = input ('Enter a number:

Enter a number: 10
#int, float,eval

IntE("107")
Float {(vA16:")
:;')

eval ('2+43

M= M= =
5

N =

foundation

edunet

Input and Output

Manual String Formatting Jexsapis:for Privt

print ('This sentence is output to the

mn
~
1)
(T
;

tExample for str.format
x=5y=10

e See Notes section with examples print ('The value of x is {} and y is {}'.format(x,y))
4
foutput

The value of x 15 5 and y 15 10

Input and Output

File handling means

File is a named location on the

system storage which records data for
later access. It enables persistent
storage in a non-volatile memory i.e.
Hard disk.

tExample for Print

R e
1t end
LeIl

: e
print ('This sen

tExample for str.format

x=5y=10

e ke 2vs Tan
print ('The valu

foutput

e 0

The value of x ic:

—

5 and

- WVUHLMNWK

' =ale
Qi

is 10

vV 18

y 49

eduggj

{}'.format (x,y))

Input and Output

Python file handling

Python I/O deal with two types of files.
Text & Binary Files

Even though the two file types may look
the same on the surface, they encode
data differently.

See notes section for more information

-

tExample for Print
print ('This sentence is output

tExample for str.format

x=5y=10
print ('Th
foutput

D

vr= 1114 ™
VALUT —

The value of x ic¢

5 allc

s 10

edunet

y is {}'.format (x,y))

Input and Output

In Python, file processing takes
place in the following order.
Open a file that returns a
filehandle.

Use the handle to perform read
or write action.

Close the filehandle.

tExample for Print
print ('This sen

EN

\‘rence
LellCe

- WVUHLMNWK

tExample for str.format

x=5y=10

foutput

- - w - ™
2 OF ¥

e e s Fanis
print ('The valu

The value of x ic:

5 and

' =ale
il

is 10

vV 18

y 49

eduggj

{}'.format (x,y))

edunet

Input and Output

#Syntax
. . #Python open() file method
Open afile in Python
file object = open(file name
[, access mode] [, buffering])
fParameter details explained in notes section

Example
= open{"test.txt™)

open file in current directory

e To read or write to a file, you need
to open it first. To open a file in
Python, use its built open()
function. This function returns a
file object, i.e., a handle. You can
use it to read or modify the file.

- e AT 4 wpd 7T

open ("C:/Python33/README. txt")

pecifying full path

= Hh W= Hh e
w |

Input and Output

We can specify the mode while opening a
file. In mode, we specify whether we want

to read 'r', write 'w' or append 'a’' to the file.

We also specify if we want to open the file
in text mode or binary mode.

The default is reading in text mode. In this
mode, we get strings when reading from
the file.

Hence, when working with files in text
mode, it is highly recommended to specify
the encoding type.

open ("test.txt™)

gquivalent to 'r' or '

=
@ |

f = --;"n("t'—‘—‘- - — r)
write 1in text mode
f open("img.bmp", 'r+k

=

f = open("test.txt",mode

r

2

read and write in binary mode

shighly recommended to sp

i
L

e

edunet

'r',encoding = 'utf-
cify the encoding type.

g'")

edunet

Input and Output

Python file object attributes
#O0pen a file in write and binary mode.
fob = open("app.log”, "wb")

e When you call the Python open() #Display file name.

i .) print "File name: ", fob.name
function, it returns an object, #Display state of the file.
which is the filehandle. Also, you print "File state: ", fob.closed

) #Print the opening mode.
should know that Python files print "Opening mode: ", fob.mode
have several linked attributes. sOutput the softspace value.
print "Softspace flag: ", fob.softspace

And we can make use of the
filehandle to list the attributes of a
file.

Input and Output

Python File object methods

file.close()

file.flush()

file.isatty()

file.tell()

file.write(string)

file.next()

file.read(size)

See notes section for description

edunet

seek

f = open('wonderland.txt')
f.seek (7)

print f.readline ()
f.close()

Output:
thought Alice to herself, 'after such a fall as this,

seek (offset) changes the file object position to offset

The offset by default is measured form beginning of file

!
n @ SkillBrew http://skillbrew.com 23

Image source -
https://www.slideshare.net/p3infotech solutions/python-
programming-essentials-m22-file-opera

http://www.slideshare.net/p3infotech_solutions/python-programming-essentials-m22-file-opera
http://www.slideshare.net/p3infotech_solutions/python-programming-essentials-m22-file-opera

Input and Output

close afile

When we are done with operations to the
file, we need to properly close the file.
Closing a file will free up the resources that
were tied with the file and is done using
Python close() method.

Python has a garbage collector to clean up
unreferenced objects but, we must not rely
on it to close the file.

eduggj

¢t

f = open("test.txt",encoding = 'utf-g8"')
perform file operations

f.close()
#This method is not entirely saf

=3
1))

If an exception occurs when we are performing
some operation with the file, the code exits
without closing the file.

A safer way 1is to use a try...finally block.
f = open("test.txt",encoding = 'utf-g"')
A&
¥

perform file operations

;élose()

'_h ‘]

ed uggj

Input and Output

write() file method

I
+

th open('app.log', 'w', encoding utf-8') as f:
#first line

Python provides the write() method to e - demm

#second line
write a string or sequence of bytes to ir;i;e_(j'fh:s file\n')
#iNlra iine
a file. This function returns a number, f.write('contains three lines\n')
which is the size of data written in a 6 SRS L BEEE, Y, eSOy = YRR A i

Single Write call. | content = f.readlines()

for line in content:
print (line)

Input and Output

Perform read operation

To read data from a file, first of all, you
need to open it in reading mode. Then,
you can call any of the methods that
Python provides for reading from a file.
Usually, we use

Python <read(size)> function to read
the content of a file up to the size. If you
don’t pass the size, then it'll read the
whole file.

th open('app.log',

#first line

edunet

'w', encoding = 'utf-8') as f:

f.write('my first file\n')

#second line

f.write('This file\n

#third line

f.write('contains th

' [

f = open('app.log',
print (f.read(10))
#'my first f'

=H=

print (f.read(4))

#'ile\n'

print (f.read()) 7
#'This file\ncontains

b
ree lines\n')

1

7 encodj_ng = ‘utf-§')
read the first 10 data

read the next 4 data

read in the rest till end of file
three lines\n'

print (f.read()) # further reading returns empty sting

£11
T

edunet

foundation

Input and Output

with open('app.log', 'w', encoding = 'utf-8') as £f:
#first line
f.write('It is my first file\n'")
#second line
: f.write('"This file\n')
Set File offset i
f.write('contains thre
#Open a file
£ open('app.log', 'r+'")
data = f.read(19):;
Te”() MethOd print ('Read String is : ', data)
#Check current position
position = f.tell():
Syntax: f||ete||() print ('Current file position : ', position)

#Reposition pointer at the beginning once again
Seeko Method position = f.seek(0, 0);

data = f.read(19);

print ('Again read String is : ', data)

#Close the opened file

Syntax: file.seek(offset[, from]) £.close ()

lines\n')

1

"

Input and Output

Renaming and deleting files

Rename - os.rename(cur_file,
new_file) The <rename()> method
takes two arguments, the current
filename and the new filename.
Remove - os.remove(file_name)

The <remove()> method deletes a file
which it receives in the argument.

foundation

port os
#Rename a file from <app.log>
os.rename("app.log", "appl.log")

ot

N
w
’ l'_1
i

|

|

(
L9

W

i mport os
#Delete a file <appl.log>

os.remove("appl.log")

edunet

foundation

Input and Output

Python Copy File-9 WayS #shutil copyfile() method
#shutil copy() method
#shutil copyfileobj () method
#shutil copy2 () method
#0s popen method
#0s system() method
e Different methods to do Python #threading Thread() method

copnye OpERHkNL #subprocess call() method
#subprocess check output () method

Image Source: https://www.techbeamers.com/python-copy-file/

http://www.techbeamers.com/python-copy-file/

Exception Handling

edunet

foundation

#Error

if a<5s
File "<interactive input>", line 1
xF: a. < 5

A

SyntaxError: invalid syntax

#Exception

G 1)
Traceback (most recent call last):
File "<string>", line 301, in run code
File "<interactive input>", line 1, in <module>

ZeroDivisionError: division by zero

Exception Handling

Error vs. Exception in Python

Error - Error is something that goes
wrong in the program, e.g., like a
syntactical error. It occurs at compile
time.

Exception - An exception is an event
which occurs during the execution of a
program and disrupts the normal flow of
the program’s instructions.

edunet

#Error
if a<5
File "<interactive input>", line 1
1if a <5
A

SyntaxError: invalid syntax

#Exception

E £ 0

Traceback (most recent call last):

File "<string>", line 301, in run code
File "<interactive input>", line 1, 1 <module>

ZeroDivisionError: division by zero

Exception Handling
Handle Exceptions

Try-Except Statement?

We use the try-except statement
to enable exception handling in
Python programs.

Inside the try block, you write the
code which can raise an
exception.

And the code that handles or
catches the exception, we place
in the except clause.

edunet

You do your operations here;

ot ExceptionI:

If there is ExceptionI,

then execute this block.
ExceptionII:

If there is ExceptionII,

then execute this block.

If there s no exception,
then execute this block.

edunet

foundation

Exception Handling

xcept ExceptionI:
If there is ExceptionI,
then execute this block.
xcept ExceptionII:
If there is ExceptionII,
then execute this block.

Exception Handling Examples

(1)l

(1]

fob = open("test", "w") else: | .
fob.write("This is my test file for exception handling!!") If there is no exception,

excent IOError: then execute this block.
print "Error: can\'t find the file or read data"

print "Write operation is performed successfully on the file"

fob.close()

ed uggj

Exception Handling

Handling All Types of Exceptions
with Except

You do your operations here;

e |f we use a bare “except” clause,
then it would catch all types of
exceptions.

Exception Handling

Handling Multiple Exceptions with
Except

We can define multiple exceptions with
the same except clause. It means that
if the Python interpreter finds a
matching exception, then it'll execute
the code written under the except
clause.

edunet

You do your operations here;

=xcept (Exceptionl[, Exception2[,...ExceptionN]]]):

If there is any exception from the given exception list,
then execute this block.

If there is no exception then execute this block

Exception Handling

Handle Exceptions with Try-Finally

With try block, we also have the option
to define the “finally” block. This clause
allows defining statements that we want
to execute, no matters whether the try
block has raised an exception or not

fob = open('test’,

w')

foundation

3 UTETn fee demmb o T dam ey e Ay T ey o At e et sl
fOb.WIlte(i1C's my tesSt Ille TO VerlIy try-Ilnally 1n eXceptlon nandling::

)

i Vs Wb mascmindidil
print 'try block executed

fob.close()
print 'finally block executed'

(=]

Exception Handling

Raise Exception with Arguments

What is Raise?

We can forcefully raise an exception
using the raise keyword.

We can also optionally pass values to
the exception and specify why it has
occurred.

#Raise Syntax
ise [Exception [, args [, traceback]]]

#Raise Example

alse M

Traceback (most recent call last):

MemoryE

emoryError

rror

raise MemoryError ("This

MemoryE

o)

rror: This 1is

aise ValueError ("This 15 1

is an argument")

Traceback (most recent call last):

an argument

fa<=0:
=pt ValueError as
rint (ve)
ing ut i

ve:
isplaye

tive integer

a = int(input ("Enter a posit

edunet

value: "))

t a positive number!!"™)

Exception Handling

Create Custom Exceptions

A custom exception is one which the
programmer creates himself.

He does it by adding a new class. The
trick here is to derive the custom
exception class from the base
exception class.

Most of the built-in exceptions do also
have a corresponding class

#define Python user-defined exceptions
= rror(Exce“t on) :

edunet

s & For othad agcaptiongm™nn
Base class f ther exceptions

lass InputTooSmallError (Error) :

Raised when the entered alpahbet

ass anutmooLaYgeEYror(Error)

Raised when the entered alpahbet

#four main program

fuser guesses an alphabet until he/she
#you need to guess this alphabet
alphabet = 'm'

gets it right

apb = raw_input("Enter an alphabet: "

f apb < alphabet:
raise InputTooSmallError
f apb > alphabet:
e InputTooLargeError

InputTooSmallError

print ("The entered alphabet i all, try again!")
print("')
cept InputToolLargeError:
print ("The entered alphabet is too large, try agair)
print ('
print("f;nq:atu;at;onsl You guessed it correctly.")

Exception Handling

Python Built-in Exceptions

Arithmetic Error
Assertion Error
Attribute Error
EOF Error
Environment Error
Floating Point Error
|O Error

Memory Error

Zero Division Error

eduggj

You do your operations here;

pt ExceptionI:

If there is ExceptionI,

then execute this block.
pt ExceptionII:

If there is ExceptionII,
then execute this block.

If there 1= no exception,
then execute this block.

edunet

Object Oriented Programming

Object-oriented programming (OOP) is a method
of structuring a program by bundling related
properties and behaviors into individual objects. -

Conceptually, objects are like the components of \/ O b 1 Q C‘t
a system. Think of a program as a factory .)

assembly line of sorts. At each step of the

assembly line a system component processes Q O r \ Q h t QO(

some material, ultimately transforming raw

material into a finished product. P Yy Y, R

An object contains data, like the raw or rOg ra I ng
preprocessed materials at each step on an
assembly line, and behavior, like the action each

assembly line component performs. Image source - https://images.app.goo.gl/awykp4Cd11lvrda3k8

https://images.app.goo.gl/aWykp4Cd11vrda3k8

OOPS in Python

Object-oriented programming is a
programming paradigm that provides a
means of structuring programs so that
properties and behaviors are bundled into
individual objects.

For instance, an object could represent a
person with properties like a name, age,
and address and behaviors such as
walking, talking, breathing, and running. Or
it could represent an email with properties
like a recipient list, subject, and body and
behaviors like adding attachments and
sending.

edunet

O Obje e

3 Oriented
PfOQTamwwing

Image source - https://images.app.qoo.gl/aWykp4Cd11lvrda3k8

https://images.app.goo.gl/aWykp4Cd11vrda3k8

foundation

OOPS in Python

Put another way, object-oriented programming is

an approach for modeling concrete, real-world

things, like cars, as well as relations between]
things, like companies and employees, students

and teachers, and so on. OOP models real-world

entities as software objects that have some data

associated with them and can perform certain

Another common programming paradigm is

procedural programming, which structures a

program like a recipe in that it provides a set of

steps, in the form of functions and code blocks, that Image source - https.//images.app.qoo.gl/6X4t6Kvg3XSFVatU6
flow sequentially in order to complete a task.

<What is O0OP7?»>

https://images.app.goo.gl/6X4t6Kvg3XSFVgtU6

e d U QHQOHT

OOPS in Python
OOPs (Object-Oriented Programming System)

Object Abstraction _
Encapsulation

Class !

Inheritance

Polymorphism

Abstraction

Encapsulation

Polymorphism

Inheritance

Class

Object

Image source- https://images.app.qoo.gl/gNm4QJbMVOWwXYeL6

https://images.app.goo.gl/gNm4QJbMV9WwXYeL6

Class in Python

Primitive data structures—Ilike numbers,
strings, and lists—are designed to
represent simple pieces of information,
such as the cost of an apple, the name of
a poem, or your favorite colors,
respectively. What if you want to represent
something more complex?

For example, let's say you want to track
employees in an organization. You need to
store some basic information about each
employee, such as their name, age,
position, and the year they started
working.

edunet

OOPs (Object-Oriented Programming System)

Abstraction
T Encapsulation

[

Polymorphism

Inheritance

Class

Object

Image source- https://images.app.goo.gl/gNm4QJbMVIWwXYel 6

https://images.app.goo.gl/gNm4QJbMV9WwXYeL6

edunet

Class in Python

There are a number of issues with this approach.
First, it can make larger code files more difficult to
manage. If you reference kirk[O] several lines
away from where the kirk list is declared, will you

remember that the element with index O is the iU
emp|0yee’3 name? kirk = ["James Kirk", 34, "Captain", 2265]

. . . spock = ["Spock™, 35, "Science Officer", 2254]
Second, it can introduce errors if not every nccoy = ["Leonard McCoy”, "Chief Medical Officer”, 2266]

employee has the same number of elements in
the list. In the mccoy list above, the age is
missing, so mccoy[1] will return "Chief Medical
Officer" instead of Dr. McCoy’s age.

A great way to make this type of code more
manageable and more maintainable is to use
classes.

edunet

Classes vs Instances

Classes are used to create user-defined data structures. Classes define functions called
methods, which identify the behaviors and actions that an object created from the class can
perform with its data.

Now create a Dog class that stores some information about the characteristics and
behaviors that an individual dog can have.

A class is a blueprint for how something should be defined. It doesn’t actually contain any
data. The Dog class specifies that a name and an age are necessary for defining a dog, but
it doesn’t contain the name or age of any specific dog.

While the class is the blueprint, an instance is an object that is built from a class and
contains real data. An instance of the Dog class is not a blueprint anymore. It's an actual
dog with a name, like Miles, who’s four years old.

How to define a class

All class definitions start with the class
keyword, which is followed by the name of
the class and a colon. Any code that is
indented below the class definition is
considered part of the class’s body.
Here’s an example of a Dog class:
class Dog:

pass
The body of the Dog class consists of a
single statement: the pass keyword. pass is
often used as a placeholder indicating where
code will eventually go. It allows you to run
this code without Python throwing an error.

Python

class Dog:
pass

edunet

edum§j

How to define a class

The Dog class isn’t very interesting right now, so
let’s spruce it up a bit by defining some properties
that all Dog objects should have. There are a

number of properties that we can choose from, class Dog:
including name, age, coat color, and breed. To keep def __init_ (self, name, age):
things simple, we’ll just use name and age. self.name = name

self.age = age
The properties that all Dog objects must have are

defined in a method called .__init__ (). Every time a
new Dog object is created, . __init__ () sets the initial
state of the object by assigning the values of the
object’s properties. That is, . _init__ () initializes
each new instance of the class.

How to define a class

In the body of .__init__ (), there are two statements
using the self variable:

Attributes created in .__init__ () are called instance
attributes. An instance attribute’s value is specific to
a particular instance of the class. All Dog objects
have a name and an age, but the values for the
name and age attributes will vary depending on the
Dog instance.

On the other hand, class attributes are attributes
that have the same value for all class instances.
You can define a class attribute by assigning a
value to a variable name outside of . _init__ ().

foundation

In the body of .__init__ (), there are two statements using the self
variable:

1. self.name = name creates an attribute called name and assigns
to it the value of the name parameter.

2.self.age = age Ccreates an attribute called age and assigns to it
the value of the age parameter.

Encapsulation in Python

Encapsulation is one of the fundamental
concepts in object-oriented programming
(OOP).

It describes the idea of wrapping data
and the methods that work on data within
one unit. This puts restrictions on
accessing variables and methods directly
and can prevent the accidental
modification of data.

To prevent accidental change, an object’s
variable can only be changed by an
object’s method. Those types of
variables are known as private variables.

class

data members
+

methods (behavior)

class

edunet

—=—PFPrFrCwRPEPAREM

=]

Variables

Fig: Encapsulation

Methods

Z 00— =P r~rCcCwvo9PArEZm

Image source -https://images.app.goo.al/giCCBpgATVRAMENA7

https://images.app.goo.gl/gjCCBpgATvRdmFNA7

Inheritance in Python

Inheritance enables us to define a class
that takes all the functionality from a
parent class and allows us to add more.

Inheritance is a powerful feature in object
oriented programming.

It refers to defining a new class with little
or no modification to an existing class.
The new class is called derived (or child)
class and the one from which it inherits is
called the base (or parent) class.

Animal (superclass)

eat()

Dog (subclass)

foundation

labrador.name
labrador.eat()

labrador.display()

display()

Image source -https://images.app.goo.gl/lUGsMbVSTVbetG8B1A

https://images.app.goo.gl/UGsMbVSTVbetG8B1A

Example of Inheritance

To demonstrate the use of inheritance, let us take
an example.

A polygon is a closed figure with 3 or more sides.
Say, we have a class called Polygon defined as
follows.

This class has data attributes to store the number
of sides n and magnitude of each side as a list
called sides.

The inputSides() method takes in the magnitude of
each side and dispSides() displays these side
lengths.

A triangle is a polygon with 3 sides. So, we can
create a class called Triangle which inherits from
Polygon. This makes all the attributes of Polygon
class available to the Triangle class.

class

Polygon:

def _ init_ (self, no_of_sides):
self.n = no_of sides

self.sides = [0 for i in range(no_of sides)]

def inputSides(self):

self.sides = [float(input("Enter side "+str(i+1)+" :

def dispSides(self):

for

i in range(self.n):
print("Side",i+1,"1s",self.sides[1])

")) for

edunet

i in range(self.n

edunet

Example of Inheritance

e We don't need to define them again (code
reusability). class Triangle(Polygon):

__1init_ (self):
Polygon._init_ (self,3)

e Triangle can be defined as follows.

def findArea(self):
a, b, c = self.sides
calculate the semi-perimeter
s=(a+b+c)/ 2
area = (s*(s-a)*(s-b)*(s-c)) ** 0.5
-int('The area of the triangle is %0.2f' %area)

Example of Inheritance

However, class Triangle has a new method
findArea() to find and print the area of the
triangle. Here is a sample run.

We can see that even though we did not
define methods like inputSides() or
dispSides() for class Triangle separately, we
were able to use them.

If an attribute is not found in the class itself,
the search continues to the base class. This
repeats recursively, if the base class is itself
derived from other classes.

edunet

>> t = Triangle()

> t.1nputSides()
Enter side 1
Enter side 2 :
Enter side 3 :

>>> t.dispSides()
Side 1 is 3.0
Side 2 is 5.0
Side 3 1is 4.0

>> t.findArea()
The area of the triangle 1s 6.00

e d U QHQOHT

Polymorphism

Shape (Parent class)

e In Python, Polymorphism lets us define
methods in the child class that have the
same name as the methods in the parent
class.

Main Program

print(b)

e In simple words, we can define Square (Child class) print(b.fact())
polymorphism as the ability of a message to print(a.fact())
be displayed in more than one form. print(b.area())

e Areal-life example of polymorphism, a
person at the same time can have different Circle (Child class)

characteristics. Like a man at the same time
is a father, a husband, an employee.

Image source -https://images.app.goo.gl/4n9APBRVUHQQBqor8

https://images.app.goo.gl/4n9APBRvUHQqBqor8

Self Parameter

Methods or functions should have self as
first parameter.

When objects are instantiated, the object
itself is passed into the self parameter.

The self parameter is a reference to the
current instance of the class, and is used to
access variables that belongs to the class.
It does not have to be named self , you can
call it whatever you like, but it has to be the
first parameter of any function in the class.

ed uggj

_—
class human():N

def init [self| |age=0, sex="?"):
self.age = age
self.sex = sex

def speak(self):

\\\ print("Hello 1 am :", self.age, "ang

\

man |= human()

', self.sex)

Image source -https://images.app.goo.agl/53w7TNIWnH|buZE6

https://images.app.goo.gl/53w7TN9iWnHjbuZE6

edunet

class student:
def details(self,n,a):
Returning Values self.name=n
self.age=a
def display(self):

_ return(self.name,self.age)
e Areturn statement is used to end the

execution of the function call .

e |t “returns” the result (value of the
expression following the return
keyword) to the caller.

s=student()

s.details (“xyz”,30)
m,n=s.display()
print(“details are”,m,n)

Output
details are xyz 30

Instances as return values

edunet

class student:
def details(self,n,a):
self.name=n
self.age=a
def display(self):
return(self)
s=student()
s.details (“xyz”,30)
sl=s.display()
print(“details are “, sl.name,s1.age)

Output
details are xyz 30

ed uggj

Constructors
myObjecT - Exomple() we can also pass
It is a special method that is automatically * PO:ZW:::is:ere
INITICH
invoked right after a new object is created. oarameters ore i
It is used to initialize the attribute values of passed on to the Object is created using

__init__ method __new__() function

to initialise the

created object *

new object created.
__init__() is a reserved method
in python classes. It is called as

a constructor in object oriented terminology:. Object s initalised using

i i — int_{) functi
This method is called when an object is —Iit_{} tunction

created from a class and it allows the class $

to initialize the attributes of the class
object ready

Image Source: https://www.studytonight.com/python/constructors-

in-python

https://www.studytonight.com/python/constructors-in-python
https://www.studytonight.com/python/constructors-in-python

edunet

Syntax for constructor def _init_ (self):
declaration # body of constructor

Constructor Types

Default Constructor

Doesn’t have any arguments

It has only one argument which is a
reference to the instance being
constructed

Parameterized Constructor
constructor with parameters

first argument is reference to instance

edunet

foundation

Constructor in Python

A constructor in Python is a special type of method which is used
toinitialize the instance members of the class.

class class_name:

def _init__(self):
#default Constructor

def _init__(self,a,bc):
#parameterized Constructor

o Prepinsta

Image source- https://images.app.qoo.gl/FWHXRVxD7qWEHY9R8

https://images.app.goo.gl/FWHxRVxD7qWEHy9R8

edunet

class student:
def __init__ (self):
self.name="xyz"

self.age=30
def display(self):
Exam ple — Default print(“details are”,self.name,self.age)
Constructor s=student(“xyz”,30)
s.display()

Output

details are xyz 30

Example — Parameterized
Constructor

foundation

class student:
def __init__ (self,n,a):
self.name=n
self.age=a
def display(self):
print(“details are”,self.name,self.age)
s=student(“xyz”,30)
s.display()

Output

details are xyz 30

Class variables and
Instance Variables

edunet
Class Variables — Declared inside the class
definition (but outside any of the instance methods).
They are not tied to any particular object of the class,
hence shared across all the objects of the class.
Modifying a class variable affects all objects instance
at the same time.
Instance Variable — Declared inside the constructor
method of class (the __init_ method). They are tied
to the particular object instance of the class, hence
the contents of an instance variable are completely
independent from one object instance to the other.

class Car:

wheels = 4 # Class variable

def __init__ (self, name):
self.name = name #lInstance variable

Destructors in Python

When an object is destroyed, destructors
are invoked. Destructors aren't as important
in Python as they are in C++ because
Python has a garbage collector that
handles memory management for you.

In Python, the del () function is known as a
destructor method. It is called after all
references to the object have been
destroyed i.e when an object is garbage
collected.

Syntax: | gef del (self):

body of destructor

edunet

Object Creation and Deletion in Python

Al t d to th
stud = Student('Err:ma', 14) _r?:i:i?)snfj:ﬁd t;’ ©

l ________ initialize the instance

Object Creation

—_—

variables

Object is created using
__new__() method
H

Object is initialized using
__init__(self, name, age)

l

|

Deleted = l

Destructors invoked using
__del__(self) method

I

Object Destroyed

Image source -https://images.app.goo.ql/CPtf96eobgf24M3MA

https://images.app.goo.gl/CPtf96eobgf24M3MA

edunet

Database

MySQL Database

e MySQL is one of the most popular database
management systems (DBMSs) on the
market today.

e |t ranked second only to the Oracle DBMS
in this year’s DB-Engines Ranking.

e As most software applications need to
interact with data in some form,
programming languages like Python provide
tools for storing and accessing these data
sources.

Database
MySQL Database

Being open source since its inception in
1995, MySQL quickly became a market
leader among SQL solutions.

MySQL is also a part of the Oracle
ecosystem.

While its core functionality is completely
free, there are some paid add-ons as well.
Currently, MySQL is used by all major tech
firms, including Google, LinkedIn, Uber,
Netflix, Twitter, and others.

edunet

edunet

Database
MySQL Database

Ease of installation: MySQL was designed to be user-friendly. It's quite straightforward to set
up a MySQL database, and several widely available third-party tools, like phpMyAdmin,
further streamline the setup process. MySQL is available for all major operating systems,
including Windows, macQOS, Linux, and Solaris.

Speed: MySQL holds a reputation for being an exceedingly fast database solution. It has a
relatively smaller footprint and is extremely scalable in the long run.

User privileges and security: MySQL comes with a script that allows you to set the password
security level, assign admin passwords, and add and remove user account privileges. This
script uncomplicates the admin process for a web hosting user management portal. Other
DBMSs, like PostgreSQL, use config files that are more complicated to use.

edunet

Installing MySQL Connector/Python
MySQL Database

A database driver is a piece of software that allows an application to connect and
interact with a database system. Programming languages like Python need a special
driver before they can speak to a database from a specific vendor.

In Python you need to install a Python MySQL connector to interact with a MySQL
database. Many packages follow the DB-API standards, but the most popular among
them is MySQL Connector/Python. You can get it with pip:

pip install mysql-connector-python

edunet

Installing MySQL Connector/Python
MySQL Database

To test if the installation was successful, type the following command on your Python
terminal:

import mysql.connector

If the above code executes with no errors, then mysql.connector is installed and ready
to use. If you encounter any errors, then make sure you're in the correct virtual
environment and you're using the right Python interpreter.

Make sure that you're installing the correct mysql-connector-python package, which is a
pure-Python implementation. Beware of similarly named but now depreciated
connectors like mysql-connector.

edunet

Establishing a Connection With MySQL Server
MySQL Database

MySQL is a server-based database management system. One server might contain multiple databases.
To interact with a database, you must first establish a connection with the server. The general workflow of
a Python program that interacts with a MySQL-based database is as follows:

Connect to the MySQL server.

Create a new database.

Connect to the newly created or an existing database.

Execute a SQL query and fetch results.

Inform the database if any changes are made to a table.

Close the connection to the MySQL server.

This is a generic workflow that might vary depending on the individual application. But whatever the
application might be, the first step is to connect your database with your application.

foundation

Establishing a Connection With MySQL Server

MySQL Database

The first step in interacting with a
MySQL server is to establish a
connection.

To do this, you need connect() from the
mysql.connector module.

This function takes in parameters like
host, user, and password and returns a
MySQLConnection object.

You can receive these credentials as
input from the user and pass them to
connect():

from getpass import getpass
from mysql.connector import connect, Error

try:
with connect(
host="localhost",
user=input("Enter username: "),
password=getpass("Enter password: "),
) as connection:
print(connection)
except Error as e:
print(e)

edunet

Establishing a Connection With MySQL Server
MySQL Database

There are several important things to notice in the code above:

You should always deal with the exceptions that might be raised while establishing a connection to
the MySQL server. This is why you use a try ... except block to catch and print any exceptions that
you might encounter.

You should always close the connection after you’re done accessing the database. Leaving unused
open connections can lead to several unexpected errors and performance issues.

You should never hard-code your login credentials, that is, your username and password, directly in
a Python script. This is a bad practice for deployment and poses a serious security threat. The code
above prompts the user for login credentials. It uses the built-in getpass module to hide the
password. While this is better than hard-coding, there are other, more secure ways to store sensitive
information, like using environment variables.

Creating a new database
MySQL Database

To create a new database, you need
to execute a SQL statement:

CREATE DATABASE books_db;
The above statement will create a

new database with the name
books db.

edunet

Creating a new database
MySQL Database

To execute a SQL query in Python,
you'll need to use a cursor, which
abstracts away the access to
database records.

MySQL Connector/Python provides
you with the MySQLCursor class,
which instantiates objects that can
execute MySQL gqueries in Python.
An instance of the MySQLCursor
class is also called a cursor.

edunet

Cursor objects make use of a
MySQLConnection object to interact
with your MySQL server. To create a
cursor, use the .cursor() method of
your connection variable:

cursor = connection.cursor()

The above code gives you an
instance of the MySQLCursor class.

Show Database
MySQL Database

You might receive an error here if a
database with the same name already
exists in your server.

To confirm this, you can display the
name of all databases in your server.
Using the same MySQLConnection
object from earlier, execute the
SHOW DATABASES statement:

foundation

show_db_query = "SHOW DATABASES"
with connection.cursor() as cursor:
cursor.execute(show_db_query)
for db in cursor:
print(db)

Creating Tables
MySQL Database

For creating tables we will follow the
similar approach of writing the SQL
commands as strings and then passing
it to the execute() method of the cursor
object.

SQL command for creating a table is —

foundation

CREATE TABLE

(

)5

column_name_1 column_Data_type,

column_name_2 column_Data_type,

column_name_n column_Data_ type

Creating Tables
MySQL Database

import mysqgl.connector

dataBase = mysql.connector.connect(host
="localhost",user ="user",passwd ="password",
database = "gfg")

cursorObject = dataBase.cursor()
studentRecord = """CREATE TABLE STUDENT
(NAME VARCHAR(20) NOT NULL, BRANCH
VARCHAR(50), ROLL INT NOT NULL,
SECTION VARCHAR(5), AGE INT)""

table created
cursorObject.execute(studentRecord)
dataBase.close()

mysql> show tables;

1 row in set (0.01 sec)

mysql> desc STUDENT;

varchar(20

varchar(50

int
SECTION | varchar(5)

rows in set (0.00 sec)

foundation

'
'
1
'
L}

+
'
L}
'
'
L
L
'
1
L

3
L
'
'
1
'
'
L

o+

Key | Default | Extra |

'
'
]
'

'
+
'

'

'

'

'

'

'

'

'
s
'

'

'

'

'

'

'
o+

+
I

4
I
|
|
|
I
+

cursorObject = dataBase.cursor()

sql - "INSERT INTO STUDENT (NAME, BRANCH, ROLL, SECTION, AGE)\

Insert Data into tables VALUES (%s, %s, %s, %s, %s)"

val (“Ram", IICSE", "85“, “B"_, ||19||)

e To insert data into the MySQL table Insert cursorobject. execute(sql, val)
. . dataBase.commit()
into query is used.

dataBase.close()

e Syntax:
mysql> select * from STUDENT;

INSERT INTO table_name (column_names)
VALUES (data)

1 row in set (0.00 sec)

mysql> |}

foundation

Inserting Multiple Rows

e To insert multiple values at once,
executemany() method is used. This
method iterates through the sequence of |aETRPeOTITEb TSR
parameters, passing the current

parameter to the execute method.

Nikhil

sql = "INSERT INTO STUDENT (NAME, BRANCH, ROLL, SECTION, AGE)\ Nisha

VALUES (%s, %s, %s, %s, %s)"

val = [("Nikhil", "CSE", "98", "A", "18"),
("Nisha", "CSE", "99", "A", "18"),
("Rohan”, "MAE", "43", "B", "28"),
("Amit", "ECE", "24", "A", "21"),

Amit
Anil
Megha
("Anil", "MAE", "45", "B", "20").
("Megha™, "ECE", "55", "A", "22"),
("sita™, "CSE", "95", "A", "19")]

I
+
I
I
I
Rohan |
I
I
I
I
o

rows in set (0.00 sec)

cursorObject.executemany(sql, val)
dataBase.commit()

edunet

Fetching Data

e We can use the select query on the MySQL

tables ('Ram', 85)
("Nikhil', 98)
query "SELECT NAME, ROLL FROM STUDENT" I . I
cursorObject.execute(query) (Nisha ! 99)
('Rohan', 43)
myresult cursorObject.fetchall() ("Amit" ’ 24)
X myresult: ("Anil’ ’ 45)
print(x) ('Megha' ’ 55)

('Sita', 95)

query

Where Clause

Where clause is used in MySQL database
to filter the data as per the condition
required.

You can fetch, delete or update a particular
set of data in MySQL database by using
where clause.

"SELECT * FROM STUDENT where AGE >=28"

cursorObject.execute(query)

myresult

cursorObject.fetchall()

X myresult:
print(x)

edunet

('Rohan', 'MAE', 43, 'B', 20)
('Amit', 'ECE', 24, 'A', 21)
('Anil', 'MAE', 45, 'B', 20)
('Megha', 'ECE', 55, 'A', 22)

foundation

Update Data

e The update query is used to change
the existing values in a database. By mysql> select * from STUDENT;
using update a specific value can be
corrected or updated. It only affects the
data and not the structure of the table.
The basic advantage provided by this
command is that it keeps the table
accurate.

cursorObject = dataBase.cursor()
rows in set (0.00 sec)

query "UPDATE STUDENT SET AGE = 23 WHERE Name ='Ram""
cursorObject.execute(query)
dataBase.commit()

foundation

Delete Data from Table

e We can use the Delete query to delete nysql> select * from STUDENT;

data from the table in MySQL. Fo----o-- Foo----- +o----- Foo---o--- +o----- +
NAME | BRANCH | ROLL | SECTION | AGE

CSE
MAE
ECE
MAE
ECE

query "DELETE FROM STUDENT WHERE NAME = "Ram"'"
cursorObject.execute(query)

dataBase.commit()

rows in set (0.00 sec)

Drop Tables

Drop command affects the structure of
the table and not data. It is used to
delete an already existing table. For
cases where you are not sure if the
table to be dropped exists or not DROP
TABLE IF EXISTS command is used.

query ="DROP TABLE Student;"

cursorObject.execute(query)
dataBase.commit()

| STUDENT
| Student

2 rows in set (0.00 sec)

mysql> show tables;

1 row in set (0.00 sec)

foundation

Orberby Clause

OrderBYy is used to arrange the result
set in either ascending or descending
order.

By default, it is always in ascending
order unless “DESC” is mentioned,
which arranges it in descending order.
“ASC” can also be used to explicitly
arrange it in ascending order. But, it is
generally not done this way since
default already does that.

edunet

query "SELECT * FROM STUDENT ORDER BY NAME DESC™
cursorObject.execute(query)

myresult

(
(
(
(
(
(
(
(

cursorObject.fetchall()

X myresult:
print(x)

‘Sita', 'CSE', 95, 'A', 19)
‘Rohan', 'MAE', 43, 'B', 20)
‘Ram’, 'CSE', 85, 'B', 19)

‘Nisha', 'CSE', 99, 'A", 18)
'‘Nikhil', 'CSE', 98, 'A', 18)
‘Megha', 'ECE', 55, 'A', 22)
‘Anil', 'MAE', 45, 'B', 20)

‘Amit', 'ECE', 24, 'A', 21)

edunet

Web Development in Python

edunet

Django

features

e Can be used to generate HTML, CSV,
Email or any other format

e Supports many databases —
Postgresqgl, MySQL, Oracle, SQLite

uuuuu

e Middleware, csrf protections, sessions, Real B
caching, authentication are also

. Image source - http://www.djangoproject.com
included

http://www.djangoproject.com/

edunet

Python Flask

Flask

web development,
one drop at 4 time

Image source -https://images.app.goo.gl/XTCDpKH23xj7DQrk7

https://images.app.goo.gl/XTCDpKH23xj7DQrk7

Python Flask

Flask is a lightweight web application
framework.

It is desighed to make getting started
quick and easy.

Able to scale ,up to complex
applications.

Flask supports Python 3.7 and newer.

ed uggj

Flask

weh development,
one drop at 4 time

'x

Image source -https://images.app.goo.gl/XTCDpKH23xj7DQrk7

https://images.app.goo.gl/XTCDpKH23xj7DQrk7

Installation

Create a project folder and a venv
folder within:

mkdir myproject
cd myproject
py -3 -m venv venv

Activate the environment

venv\Scripts\activate

Install Flask

pip install Flask

ed uggj

Flask

weh development,
one drop at 4 time

'x

Image source -https://images.app.goo.gl/XTCDpKH23xj7DQrk7

https://images.app.goo.gl/XTCDpKH23xj7DQrk7

edum§j

Simple Application

*First you need to import the Flask class.
from flask import Flask

) app = Flask(_ name_)
«After that, we make an instance of the class.

__name___is a handy shortcut for this that .route("/")
works well in most cases. def hello world():

return "<p>Hello, World!</p»"

*The route() decorator is then used to tell
Flask which URL should be used to call our
function.

*Because HTML is the default content type,
the browser will render HTML in the string.

edunet

Run the Application

We can run the application on command

prompt > set FLASK APP=hello
_ » flask run
isﬂet T(LASK_APP_he”O * Running on http://127.8.8.1:5608/
askK run

* Running on http://127.0.0.1:5000

edunet

Python for Web-Django

(60 hours)

Disclaimer: The content is curated for educational purposes only.

e d U [Jﬂgﬁj

In this module, student will learn about:

e Web Framework, Django Introduction, Django Architecture
e Django MVC, MVT (Model View Template)

Views and URL mapping, HttpRequest and HttpResponse , GET and
POST Method

Template, Render, Views, Context

Template Editing

SQL operation in django

Handling sessions, cookies and working with JSON and AJAX

© Edunet Foundation. All rights reserved.

edunet

Web Framework, Django Introduction, Django
Architecture

Disclaimer: The content is curated for educational purposes only.
© Edunet Foundation. All rights reserved.

e d U QHQOHT

In this sub-section, we will discuss:

e Web Framework
e Django Introduction
e Django Architecture

© Edunet Foundation. All rights reserved.

Web Framework

A web framework (WF) or web application
framework (WAF) is a software framework
that is designed to support the development
of web applications including web services,
web resources, and web APIs.

Web frameworks provide a standard way to
build and deploy web applications on the
World Wide Web.

Web frameworks aim to automate the
overhead associated with common
activities performed in web development.

ed uggj

mILS I
EXPpress - B4 BACKBONE)S
I |sone o
@ symfony ﬁ O VANGULARIS
[
django B sootstrap

Image Source:https://www.scnsoft.com/blog/web-application-framework

https://www.scnsoft.com/blog/web-application-framework

Introduction to Django

Django is a Python-based free and
open-source web framework that
follows the model-views-
template(MVT) architectural pattern.
Django's primary goal is to ease the
creation of complex, database-driven
websites.

The framework emphasizes reusability
and "pluggability” of components, less
code, low coupling, rapid
development, and the principle of
don't repeat yourself.

edunet

django View release notes for Django 2.1

b A

v

The install worked successfully! Congratulations!
You are seeing this page because DEBUG=True is in

your settings file and you have not configured any
URLs

O Dijango Documentation ., Tutorial: A Polling App o Django Community

Image Source:
https://en.wikipedia.org/wiki/File:Django 2.1 landing page.png

https://en.wikipedia.org/wiki/File:Django_2.1_landing_page.png

edunet

Django Features

Helps you to define patterns for the URLSs in your application

Simple but powerful URL system

Built-in authentication system

Object-oriented programming language database which offers best in class data storage
and retrieval

Automatic admin interface feature allows the functionality of adding, editing and deleting
items. You can customize the admin panel as per your need.

It is used for Rapid Development

Secure

Open Source

Vast and Supported Community

Django Architecture

Model-View-Template (MVT) Architecture

e Django is based on MVT (Model-View-
Template) architecture. MVT is a
software design pattern for developing
a web application.

e M stands for Model

e V stands for View

e T stands for Template

edunet

TEMPLATE

: Complete
data Uzer input
Desion and -
Updatian

Image Source: https://media.geeksforgeeks.org/wp-
content/uploads/20210606092225/image.png

https://media.geeksforgeeks.org/wp-content/uploads/20210606092225/image.png
https://media.geeksforgeeks.org/wp-content/uploads/20210606092225/image.png

e d U QHQOHT

Model-View-Template (MVT) Architecture (Continued)

e MVT Structure has the following three parts —

e Model: The model is going to act as the interface of your data. It is responsible for
maintaining data. It is the logical data structure behind the entire application and is
represented by a database (generally relational databases such as MySql, Postgres).

e View: The View is the user interface — what you see in your browser when you render a
website. It is represented by HTML/CSS/Javascript and Jinja files.

e Template: A template consists of static parts of the desired HTML output as well as some
special syntax describing how dynamic content will be inserted.

= A
=
user django =]
S = — . —
L

Image Source: https://www.tutorialspoint.com/django/images/django_mvc_mvt_pattern.jpg

https://www.tutorialspoint.com/django/images/django_mvc_mvt_pattern.jpg

Model-View-Controller (MVC)
Architecture

Model View Controller or MVC as it is
popularly called, is a software design
pattern for developing web applications.
A Model View Controller pattern is made
up of the following three parts -

Model — The lowest level of the pattern
which is responsible for maintaining data.
View — This is responsible for displaying all
or a portion of the data to the user.
Controller — Software Code that controls
the interactions between the Model and
View.

ed uggj

()
=}
-
S
S
)
1
r Y

Image Source: https://www.tutorialspoint.com/struts _2/images/struts-
mvc.jpg

https://www.tutorialspoint.com/struts_2/images/struts-mvc.jpg
https://www.tutorialspoint.com/struts_2/images/struts-mvc.jpg

Model-View-Controller (MVC) Architecture (Continued)

MVC is popular as it isolates the application logic from the user interface layer and supports
separation of concerns. Here the Controller receives all requests for the application and then
works with the Model to prepare any data needed by the View. The View then uses the data
prepared by the Controller to generate a final presentable response. The MVC abstraction

can be graphically represented as shown in Figl.

The Model

The model is responsible for managing the data of the application. It responds to the request
from the view and it also responds to instructions from the controller to update itself.

The View

It means presentation of data in a particular format, triggered by a controller's decision to
present the data. They are script-based templating systems like JSP, ASP, PHP and very
easy to integrate with AJAX technology.

The Controller

The controller is responsible for responding to the user input and perform interactions on the
data model objects. The controller receives the input, it validates the input and then performs
the business operation that modifies the state of the data model.

e d U QHQOT

Controller —

l,

View

il

Figl.

Image Source: https://www.tutorialspoint.com/struts_2/images/struts-mvc.jpg

https://www.tutorialspoint.com/struts_2/images/struts-mvc.jpg

In this section, Let us work practically. Lets get your
hands dirty with code

e |Installation of Django
e Creating the first project with Django

© Edunet Foundation. All rights reserved.

oooooooooo

Installation of Django

e Creating environment for Django project
Install latest version of python

e Checkinstalled version

e Install pipenev

e Install visual studio code editor
e Install Django

e Create virtual environment

e Install django

e d U [Jﬂgﬁj

edunet
Installation of Django
Step 1) Creating environment for Django project (Continued)

A) Install latest version of python

1. Download and install latest version of B C\WINDOWS system32\amd e
python from the url Microsoft Windows [Version 10.9.19644.1645]
https://www.python.org/downloads/ (c) Microsoft Corporation. ALL rights reserved.
B) Check for installed version of python TR

1. Press Window + R to open command Python 3.8.8
prompt

2. Type cmd in open box and press ok button

Command prompt will open

4. On command prompt type following
command, it will display the current python
version installed on your laptop

> python --version

C:\Users\Hp>,

w

https://www.python.org/downloads/

e d U QHQOT

Step 1) Creating environment for Django project (Continued)

C) Install pipenev
> pip3install pipenv

e d U QHQOHT

Step 1) Creating environment for Django project (Continued)

D) Install visual studio code editor

e Visit URI and download
https://code.visualstudio.com/

Code editing.
Redefined.

Download for Windows

Staivle Buid

v

e d U [Jﬂgﬁj

Step 2) Creating the first Project with django

A) Switch to Desktop
> cd Desktop

B) Create Project folder
> mkdir <<projectname_folder>>
> mkdir learndjango
Move to learndjango directory
>cd learndjango

edunet

foundation

Creating the first Project with django

C) Install django
>pipenv install django

Successfully created the virtual environment

Creating the first Project with django

C) Install django (Continued) P oy e rre— ——— e

- Virtual environment location e
is shown in above image o o A
C:\Users\Hp\.virtualenvs\lear sicnan | & e

ndjango-wvakKlYya

Creating the first Project with django

C)Install django (Continued)

« Activate python interpreter under this virtual environment
>pipenv shell

uuuuuuuuuuuu

Creating the first Project with django

C) Install django (Continued)

* Run django-admin to start new project.
« django admin is utility comes along with django
>django-admin

uuuuuuuuuuuu

e d U QHQOT

Creating the first Project with django

D) start our project learndjango

> django-admin startproject <<project_name>>
> django-admin startproject learndjango

M COMNOOWS syt - o

-It creates the two directories with the same name learndjango

-First directory learndjango is the project directory and second directory
learndjango is the django application directory

-delete the first directory learndjango and go to the command prompt

e d U QHQOHT

Creating the first Project with django

E) Go Back to the terminal and execute the command
> django-admin startproject learndjango .

It will use current directory as our project
directory .1t will now not going to create the
additional directory.

edunet

Creating the first Project with django

F) Start webserver

e Start webserver - Run the command
>python manage.py runserver
It will start server at http://127.0.0.1:8000/

Creating the first Project with django

G) Load the landing page/welcome page of django

* Now open browser and type address
http://127.0.0.1:8000/ to open home page of our Django
project learndjango

@ o = ,- 2 - ° = (=}

gratula
3

Congratulation! You have installed and run the Django home page successfully.

aaaaaaaaaaa

edunet

Writing your first Django app: basic poll application

Throughout this tutorial section, we’ll walk you through the creation of a basic poll application.
It'll consist of two parts:

A public site that lets people view polls and vote in them.
An admin site that lets you add, change, and delete polls.

We’ll assume you have Django installed already. You can tell Django is installed and which
version by running the following command in a command prompt

> python -m django --version

If Django is installed, you should see the version of your installation. If it isn’t, you’ll get an
error telling “No module named django”.

This tutorial is written for Django 4.0, which supports Python 3.8 and later.

edunet

Writing your first Django app: basic poll application
Creating your project

If this is your first time using Django, you’ll have to take care of some initial setup. Namely,
you'll need to auto-generate some code that establishes a Django project — a collection of

settings for an instance of Django, including database configuration, Django-specific options
and application-specific settings.

From the command line, cd into a directory where you’d like to store your code, then run the
following command:

> django-admin startproject mysite

This will create a mysite directory in your current directory.

Writing your first Django app: basic poll application

Creating your project (Continued)
Let’s look at what startproject created:

~

mysite/
manage.py
mysite/
__init__.py
settings.py
urls.py
asgi.py

\ wWsgi.py }

We will dicuss on these files in next slide.

oooooooooo

edunet

Writing your first Django app: basic poll application
Creating your project (Continued)

Let us discuss on different files created by Django . These files are as follows:

The outer mysite/ root directory is a container for your project. Its name doesn’t matter to
Django; you can rename it to anything you like.

manage.py: A command-line utility that lets you interact with this Django project in various
ways. You can read all the details about manage.py in django-admin and manage.py.

The inner mysite/ directory is the actual Python package for your project. Its name is the
Python package name you’ll need to use to import anything inside it (e.g. mysite.urls).

mysite/__init__.py: An empty file that tells Python that this directory should be considered a
Python package.

e d U [Jﬂgﬁj

Writing your first Django app: basic poll application
Creating your project (Continued)

Let us discuss on different files created by Django (Continued)

mysite/urls.py: The URL declarations for this Django project; a “table of contents” of your
Django-powered site. You can read more about URLs in URL dispatcher.

mysite/asgi.py: An entry-point for ASGI-compatible web servers to serve your project. See
How to deploy with ASGI for more details.

mysite/wsgi.py: An entry-point for WSGI-compatible web servers to serve your project. See
How to deploy with WSGI for more details.

e d U [Jﬂgﬁj

Writing your first Django app: basic poll application

The development server : Run the server

e Let’s verify your Django project works. Change into the outer mysite directory, if you haven'’t already,
and run the following commands:

>python manage.py runserver
* You'll see the following output on the command line:
Performing system checks...
System check identified no issues (0 silenced).
You have unapplied migrations; your app may not work properly until they are applied.
Run 'python manage.py migrate' to apply them.
April 20, 2022 - 15:50:53
Django version 4.0, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.
» Ignore the warning about unapplied database migrations for now; we’ll deal with the database shortly.

edunet

Writing your first Django app: basic poll application
The development server : Changing the port :

By default, the runserver command starts the development server on the internal IP at port 8000.

If you want to change the server’s port, pass it as a command-line argument. For instance, this
command starts the server on port 8080:

>python manage.py runserver 8080

If you want to change the server’s IP, pass it along with the port. For example, to listen on all
available public IPs (which is useful if you are running Vagrant or want to show off your work on
other computers on the network), use:

>python manage.py runserver 0:8000
0 is a shortcut for 0.0.0.0.

Automatic reloading of runserver

Writing your first Django app: basic poll application
The development server : Automatic reloading of runserver

The development server automatically reloads Python code
for each request as needed. You don’t need to restart the
server for code changes to take effect. However, some
actions like adding files don’t trigger a restart, so you’ll have to
restart the server in these cases.

aaaaaaaaaaa

e d U [Jﬂgﬁj

Writing your first Django app: basic poll application
Creating the poll app

Projects vs. apps

What's the difference between a project and an app? An
app is a web application that does something — e.g., a blog
system, a database of public records or a small poll app. A
project is a collection of configuration and apps for a
particular website. A project can contain multiple apps. An
app can be in multiple projects.

edunet

Writing your first Django app: basic poll application
Creating the poll app

Now that your environment — a “project” — is set up, you're set to start doing work.

Each application you write in Django consists of a Python package that follows a certain
convention. Django comes with a utility that automatically generates the basic directory
structure of an app, so you can focus on writing code rather than creating directories.

Your apps can live anywhere on your Python path. In this tutorial, we’ll create our poll app in
the same directory as your manage.py file so that it can be imported as its own top-level
module, rather than a submodule of mysite.

To create your app, make sure you're in the same directory as manage.py and type this
command:

>python manage.py startapp polls

Writing your first Django app: basic poll application
Creating the poll app

* Now that your environment — a “project” — is set up, you’re set to start doing work.
» That'll create a directory polls, which is laid out like this:
polls/

__init__.py

admin.py

apps.py

migrations/

__init__.py

models.py

tests.py

Views.py
This directory structure will house the poll application.

aaaaaaaaaaa

e d U [Jﬂgﬁj

Writing your first Django app: basic poll application
Creating the poll app: Write your first view

« Now that your environment — a “project” — is set up, you’re set to start doing work.
« Let's write the first view. Open the file polls/views.py and put the following Python code in it:

from django.http import HttpResponse
def index(request):
return HttpResponse("Hello, world. You're at the polls index.")

This is the simplest view possible in Django. To call the view, we need to map it to a URL -
and for this we need a URLconf.

fffffffffff

Writing your first Django app: basic poll application
Creating the poll app: Write your first view

» To create a URLconf in the polls directory, create a file called urls.py. Your app directory
should now look like:

polls/
__init_.py
admin.py
apps.py
migrations/

__init__.py

models.py
tests.py

urls.py
Views.py

Writing your first Django app: basic poll application
Creating the poll app: Write your first view

* In the polls/urls.py file include the following code:
from django.urls import path
from . import views

urlpatterns = [
path(", views.index, name='index’),

fffffffffff

e d U QHQOHT

Writing your first Django app: basic poll application
Creating the poll app: Write your first view

» The next step is to point the root URLconf at the polls.urls module. In mysite/urls.py, add an import for
django.urls.include and insert an include() in the urlpatterns list, so you have:

from django.contrib import admin
from django.urls import include, path

urlpatterns = [
path(‘polls/', include('polls.urls')),
path(‘admin/', admin.site.urls),

» The include() function allows referencing other URLconfs. Whenever Django encounters include(), it
chops off whatever part of the URL matched up to that point and sends the remaining string to the
included URLconf for further processing.

e d U [Jﬂgﬁj

Writing your first Django app: basic poll application
Creating the poll app: Write your first view

The idea behind include() is to make it easy to plug-and-play URLSs. Since polls are in their
own URLconf (polls/urls.py), they can be placed under “/polls/”, or under “/fun_polls/”, or under
“/content/polls/”, or any other path root, and the app will still work

Note: When to use include()

You should always use include() when you include other URL patterns. admin.site.urls is the
only exception to this.

e d U QHQOHT

Writing your first Django app: basic poll application
Creating the poll app: Write your first view

You have now wired an index view into the URLconf. Verify it's working with the following
command:

>python Manage.py runserver

Go to http://localhost:8000/polls/ in your browser, and you should see the text “Hello, world.
You're at the polls index.”, which you defined in the index view.

& 127.0.0.1:8000/polls/ X +

< C ® 127.0.0.1:8000/polls/

@ Speedtest by Ookla.. @ Tikona Login @ Machine Learning... #A Microsoft Azure |:5| Pandas

Hello, world. You're at the polls index.

Let us add database into the poll app

Database

Disclaimer: The content is curated for educational purposes only.
© Edunet Foundation. All rights reserved.

foundation

edunet

Writing your first Django app: Part 2
Migrating the database

WEe'll set up the database, create your first model, and get a quick introduction to Django’s
automatically-generated admin site.

Database setup

Now, open up mysite/settings.py. It's a normal Python module with module-level variables
representing Django settings.

By default, the configuration uses SQLite. SQLite is included in Python, so you won'’t need to
install anything else to support your database.

edunet

Writing your first Django app: Part 2
Migrating the database: Database setup (Continued)

If you wish to use another database, install the appropriate database bindings and change the
following keys in the DATABASES 'default’ item to match your database connection settings:

ENGINE - Either 'django.db.backends.sqlite3’, 'django.db.backends.postgresql’,
'django.db.backends.mysql', or 'django.db.backends.oracle'. Other backends are also
available.

NAME — The name of your database. If you're using SQLite, the database will be a file on your
computer; in that case, NAME should be the full absolute path, including filename, of that file.
The default value, BASE_DIR / 'db.sqlite3', will store the file in your project directory.

If you are not using SQLite as your database, additional settings such as USER, PASSWORD,
and HOST must be added.

edunet

Writing your first Django app: Part 2
Setup Timezone , INSTALLED_APPS

While you're editing mysite/settings.py, set TIME_ZONE to your time zone.

Also, note the INSTALLED_APPS setting at the top of the file. That holds the names of all
Django applications that are activated in this Django instance. Apps can be used in multiple
projects, and you can package and distribute them for use by others in their projects.

By default, INSTALLED_APPS contains the following apps, all of which come with Django:
django.contrib.admin — The admin site. You'll use it shortly.
django.contrib.auth — An authentication system.
django.contrib.contenttypes — A framework for content types.
django.contrib.sessions — A session framework.
django.contrib.messages — A messaging framework.
django.contrib.staticfiles — A framework for managing static files.

These applications are included by default as a convenience for the common case.

edunet

Writing your first Django app: Part 2
Setup Timezone , INSTALLED_APPS (Continued)

Some of these applications mentioned in previous slide make use of at least one database
table, though, so we need to create the tables in the database before we can use them. To do
that, run the following command:

>python manage.py migrate

The migrate command looks at the INSTALLED APPS setting and creates any necessary
database tables according to the database settings in your mysite/settings.py file and the
database migrations shipped with the app

You'll see a message for each migration it applies.

If you’re interested, run the command-line client for your database and type \dt (PostgreSQL),
SHOW TABLES; (MariaDB, MySQL), .tables (SQLite), or SELECT TABLE_ NAME FROM
USER_TABLES,; (Oracle) to display the tables Django created.

Writing your first Django app: Part 2
INSTALLED_APPS (Continued): Applying Migration

After Output after executing the command
> python manage.py migrate

BN C\WINDOWS\system32\cmd.exe

edunet

foundation

[21/Apr/2022 16:19:27] "GET /polls/ HTTP/1.1" 200 4@

F:\Djangoprojects\mysite>python manage.py migrate

Operations

to perform:

Apply all migrations: admin, auth, contenttypes, sessions
Running migrations:

Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying

contenttypes.00@1_initial...
auth.eeel_initial...

admin.eeel_initial...
admin.©@e2_logentry_remove_auto_add. ..
admin.@ee3_logentry_add_action_flag_ choices.. .
contenttypes.@002_remove_content_type_name...
auth.eee2_alter_permission_name_max_length. ..
auth.@6e3_alter_user_email_max_length...
auth.eee4_alter_user username_opts. ..
auth.eee5_alter_user_last_login_null
auth.@ee6_require_contenttypes_©002.
auth.@e67_alter_validators_add_error_messages. ..
auth.eee8 alter user username_max_length...
auth.eee9_alter user last_name_max_length
auth.e@1e_alter_group_name_max_length...
auth.8e11_update_proxy_permissions.. .
auth.ee12_alter_user_first_name_max_lengt
sessions.@eol_initial...

F:\Djangoprojects\mysite>_

edunet

Writing your first Django app: Part 2
Creating models

Now we’ll define your models — essentially, your database layout, with additional
metadata.

Overview-

A model is the single, definitive source of information about your data. It contains the
essential fields and behaviors of the data you're storing. Django follows the DRY
Principle. The goal is to define your data model in one place and automatically
derive things from it.

This includes the migrations - unlike in Ruby On Rails, for example, migrations are
entirely derived from your models file, and are essentially a history that Django can
roll through to update your database schema to match your current models.

https://docs.djangoproject.com/en/4.0/misc/design-philosophies/
https://docs.djangoproject.com/en/4.0/misc/design-philosophies/

e d U [Jﬂgﬁj

Writing your first Django app: Part 2
Creating models (Continued)

In our poll app, we’ll create two models: Question and Choice.
A Question has a question and a publication date.
A Choice has two fields: the text of the choice and a vote tally.
Each Choice is associated with a Question.

These concepts are represented by Python classes. Edit the polls/models.py file so it looks
like this:

e d U QHQOHT

Writing your first Django app: Part 2
Creating models (Continued)

» These concepts are represented by Python classes. Edit the polls/models.py file so it
looks like this:

from django.db import models

class Question(models.Model):
guestion_text = models.CharField(max_length=200)
pub_date = models.DateTimeField(‘date published")

class Choice(models.Model):
question = models.ForeignKey(Question, on_delete=models. CASCADE)
choice_text = models.CharField(max_length=200)
votes = models.IntegerField(default=0)

edunet

Writing your first Django app: Part 2
Models explanation :

Here, each model is represented by a class that subclasses django.db.models.Model. Each
model has a number of class variables, each of which represents a database field in the
model.

Each field is represented by an instance of a Field class — e.g., CharField for character fields
and DateTimeField for datetimes. This tells Django what type of data each field holds.

The name of each Field instance (e.g. question_text or pub_date) is the field’'s name, in
machine-friendly format. You'll use this value in your Python code, and your database will use
it as the column name.

You can use an optional first positional argument to a Field to designate a human-readable
name. That's used in a couple of introspective parts of Django, and it doubles as
documentation. If this field isn’t provided, Django will use the machine-readable name. In this
example, we’ve only defined a human-readable name for Question.pub_date. For all other
fields in this model, the field’s machine-readable name will suffice as its human-readable
name.

edunet

Writing your first Django app: Part 2
Models explanation : (Continued)

Some Field classes have required arguments. Char Field, for example, requires that you give
it a max_length. That’s used not only in the database schema, but in validation, as we’ll soon
see.

A Field can also have various optional arguments; in this case, we've set the default value of
votes to 0.

Finally, note a relationship is defined, using Foreign Key. That tells Django each Choice is
related to a single Question. Django supports all the common database relationships: many-
to-one, many-to-many, and one-to-one.

e d U [Jﬂgﬁj

Writing your first Django app: Part 2
Activating models-

That small bit of model code gives Django a lot of information. With it, Django is able to:
Create a database schema (CREATE TABLE statements) for this app.
Create a Python database-access API for accessing Question and Choice objects.

e d U [Jﬂgﬁj

Writing your first Django app: Part 2
Activating models-

First we need to tell our project that the polls app is installed

To include the app in our project, we need to add a reference to its configuration class in the INSTALLED _APPS
setting. The PollsConfig class is in the polls/apps.py file, so its dotted path is 'polls.apps.PollsConfig'. Edit the
mysite/settings.py file and add that dotted path to the INSTALLED APPS setting. It'll look like this:

INSTALLED_APPS =]
‘polls.apps.PolisConfig’,
‘django.contrib.admin’,
‘django.contrib.auth’,
‘django.contrib.contenttypes’,
‘django.contrib.sessions’,
‘django.contrib.messages’,
‘django.contrib.staticfiles’,

e d U QHQOHT

Writing your first Django app: Part 2
Activating models-

* Now Django knows to include the polls app. Let’s run another command:
>python manage.py makemigrations polls

* You should see something similar to the following:

Migrations for 'polls":
polls/migrations/0001_initial.py
- Create model Question
- Create model Choice

« By running makemigrations, you’re telling Django that you’ve made some changes to your models (in
this case, you've made new ones) and that you'd like the changes to be stored as a migration.

edunet

Writing your first Django app: Part 2
Activating models-

Migrations are how Django stores changes to your models (and thus your database schema) -
they’re files on disk. You can read the migration for your new model if you like; it's the file
polls/migrations/0001 _initial.py. Don’t worry, you’re not expected to read them every time
Django makes one, but they’re designed to be human-editable in case you want to manually

tweak how Django changes things.

There’s a command that will run the migrations for you and manage your database schema
automatically - that’s called migrate, and we’ll come to it in a moment - but first, let's see what
SQL that migration would run. The sgimigrate command takes migration names and returns
their SQL.:

>python manage.py sgimigrate polls 0001

edunet

foundation

Writing your first Django app: Part 2
Activating models-

You should see something similar to the following (we’ve reformatted it for readability):
BEGIN;
-- Create model Question
-CREATE TABLE "polls_question” (
"id" serial NOT NULL PRIMARY KEY,
"question_text" varchar(200) NOT NULL,
"pub_date" timestamp with time zone NOT NULL
)i
-- Create model Choice
CREATE TABLE "polls_choice" (
"id" serial NOT NULL PRIMARY KEY,
"choice_text" varchar(200) NOT NULL,
"votes" integer NOT NULL,
"guestion_id" integer NOT NULL

e d U [Jﬂgﬁj

Writing your first Django app: Part 2
Activating models- (Continued)

ALTER TABLE "polls_choice"
ADD CONSTRAINT "polls_choice_question_id _c5b4b260 fk polls_question_id"
FOREIGN KEY ("question_id")
REFERENCES "polls_question” ("id")
DEFERRABLE INITIALLY DEFERRED;
CREATE INDEX "polls_choice question_id _c5b4b260" ON "polls_choice" ("question_id");

COMMIT;

edunet

Writing your first Django app: Part 2
Activating models- (Continued)

Note the following:

The exact output will vary depending on the database you are using. The example above is generated for
PostgreSQL.

Table names are automatically generated by combining the name of the app (polls) and the lowercase name
of the model — question and choice. (You can override this behavior.)

Primary keys (IDs) are added automatically. (You can override this, too.)

By convention, Django appends " _id" to the foreign key field name. (Yes, you can override this, as well.)

The foreign key relationship is made explicit by a FOREIGN KEY constraint. Don’t worry about the
DEFERRABLE parts; it’s telling PostgreSQL to not enforce the foreign key until the end of the transaction.

It's tailored to the database you’re using, so database-specific field types such as auto_increment (MySQL),
serial (PostgreSQL), or integer primary key autoincrement (SQLite) are handled for you automatically. Same
goes for the quoting of field names — e.g., using double quotes or single quotes.

The sglmigrate command doesn’t actually run the migration on your database - instead, it prints it to the
screen so that you can see what SQL Django thinks is required. It’s useful for checking what Django is going
to do or if you have database administrators who require SQL scripts for changes.

edunet

foundation

Writing your first Django app: Part 2
Migrating the models

* Now, run migrate again to create those model tables in your database:
> python manage.py migrate
* [t will show output like

perations to perform:

Apply all migrations: admin, auth, contenttypes, polls, sessions
Running migrations:

Rendering model states... DONE

Applying polls.0001 _initial... OK

The migrate command takes all the migrations that haven’t been applied (Django tracks which ones are applied using a special
table in your database called django_migrations) and runs them against your database - essentially, synchronizing the
changes you made to your models with the schema in the database.

Migrations are very powerful and let you change your models over time, as you develop your project, without the need to
delete your database or tables and make new ones - it specializes in upgrading your database live, without losing data.

edunet

Writing your first Django app: Part 2
Playing with the API

Now, let’s hop into the interactive Python shell and play around with the free API Django gives
you. To invoke the Python shell, use this command:

>python manage.py shell

We're using this instead of simply typing “python”, because manage.py sets the
DJANGO_SETTINGS_ MODULE environment variable, which gives Django the Python import
path to your mysite/settings.py file.

Once you're in the shell, explore the database API:

>>> from polls.models import Choice, Question # Import the model classes we just
wrote.

No questions are in the system yet.
>>> Question.objects.all()
<QuerySet []>

edunet

Writing your first Django app: Part 2
Playing with the API(Continued)

Once you’re in the shell, explore the database API:
Create a new Question.
Support for time zones is enabled in the default settings file, so
Django expects a datetime with tzinfo for pub_date. Use timezone.now()
instead of datetime.datetime.now() and it will do the right thing.
>>> from django.utils import timezone
>>> (= Question(question_text="What's new?", pub_date=timezone.now())
Save the object into the database. You have to call save() explicitly.
>>> (.save()
Now it has an ID.
>>> (.id
1

e d U [Jﬂgﬁj

Writing your first Django app: Part 2
Playing with the API(Continued)

Once you're in the shell, explore the database API:
Access model field values via Python attributes.
>>> (.question_text
"What's new?"
>>> .pub_date
datetime.datetime(2012, 2, 26, 13, 0, 0, 775217, tzinfo=<UTC>)
Change values by changing the attributes, then calling save().
>>> (.question_text = "What's up?"
>>> (.save()
objects.all() displays all the questions in the database.
>>> Question.objects.all()
<QuerySet [<Question: Question object (1)>]>
To explore more click here

https://docs.djangoproject.com/en/4.0/intro/tutorial02/

e d U QHQOHT

Writing your first Django app: Part 2
Playing with the API(Continued)

« Wait a minute. <Question: Question object (1)> isn’t a helpful representation of this object. Let’s fix that by
editing the Question model (in the polls/models.py file) and addinga __str () method to both Question
and Choice:

from django.db import models

class Question(models.Model):
#..
def _str_ (self):
return self.question_text

class Choice(models.Model):
#...
def _str_ (self):
return self.choice_text

edunet

foundation

Writing your first Django app: Part 2
Playing with the API(Continued)

« It'simportantto add __str__ () methods to your models, not only for your own convenience when dealing with the interactive
prompt, but also because objects’ representations are used throughout Django’s automatically-generated admin.

* Let’s also add a custom method to this model: polls/models.py —
import datetime

from django.db import models
from django.utils import timezone

class Question(models.Model):
#...
def was_published_recently(self):
return self.pub_date >= timezone.now() - datetime.timedelta(days=1)

e d U [Jﬂgﬁj

Writing your first Django app: Part 2
Playing with the API(Continued)

» Note the addition of import datetime and from django.utils import timezone, to reference Python’s standard
datetime module and Django’s time-zone-related utilities in django.utils.timezone, respectively. If you
aren’t familiar with time zone handling in Python, you can learn more in the time zone support docs.

« Save these changes and start a new Python interactive shell by running python manage.py shell again:
>>> from polls.models import Choice, Question
Make sure our __str__ () addition worked.
>>> Question.objects.all()

<QuerySet [<Question: What's up?>]>

Django provides a rich database lookup API that's entirely driven by
keyword arguments.

e d U [Jﬂgﬁj

Writing your first Django app: Part 2
Playing with the API(Continued)

+ Save these changes and start a new Python interactive shell by running python manage.py shell again:

keyword arguments.

>>> Question.objects.filter(id=1)

<QuerySet [<Question: What's up?>]>

>>> Question.objects.filter(question_text _startswith="What')
<QuerySet [<Question: What's up?>]>

Get the question that was published this year.

>>> from django.utils import timezone

>>> current_year = timezone.now().year

>>> Question.objects.get(pub_date year=current_year)
<Question: What's up?>

e d U [Jﬂgﬁj

Writing your first Django app: Part 2
Playing with the API(Continued)

+ Save these changes and start a new Python interactive shell by running python manage.py shell again:

Make sure our custom method worked.
>>> (= Question.objects.get(pk=1)

>>> (.was_published_recently()

True

Give the Question a couple of Choices. The create call constructs a new
Choice object, does the INSERT statement, adds the choice to the set

of available choices and returns the new Choice object. Django creates
a set to hold the "other side" of a ForeignKey relation

(e.g. a question's choice) which can be accessed via the API.

>>> (= Question.objects.get(pk=1)

e d U [Jﬂgﬁj

Writing your first Django app: Part 2
Playing with the API(Continued)

+ Save these changes and start a new Python interactive shell by running python manage.py shell again:

Display any choices from the related object set -- none so far.
>>> (.choice_set.all()
<QuerySet []>

Create three choices.

>>> (J.choice_set.create(choice_text='"Not much’, votes=0)

<Choice: Not much>

>>> (J.choice_set.create(choice_text="The sky', votes=0)

<Choice: The sky>

>>> ¢ = (.choice_set.create(choice_text='Just hacking again', votes=0)

e d U [Jﬂgﬁj

Writing your first Django app: Part 2
Playing with the API(Continued)

+ Save these changes and start a new Python interactive shell by running python manage.py shell again:

Choice objects have API access to their related Question objects.
>>> c.question
<Question: What's up?>

And vice versa: Question objects get access to Choice objects.

>>> (.choice_set.all()

<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>
>>> (.choice_set.count()

3

edunet

Writing your first Django app: Part 2
Playing with the API(Continued)

+ Save these changes and start a new Python interactive shell by running python manage.py shell again:

The API automatically follows relationships as far as you need.

Use double underscores to separate relationships.

This works as many levels deep as you want; there's no limit.

Find all Choices for any question whose pub_date is in this year

(reusing the 'current_year' variable we created above).

>>> Choice.objects.filter(question___pub_date year=current_year)

<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>

Let's delete one of the choices. Use delete() for that.
>>> ¢ = (.choice_set.filter(choice_text startswith="'Just hacking’)
>>> c.delete()

edunet

foundation

Django Admin

Disclaimer: The content is curated for educational purposes only.
© Edunet Foundation. All rights reserved.

e d U QHQOT

Introducing the Django Admin

Overview:

» Generating admin sites for your staff or clients to add, change, and delete content is tedious work that
doesn’t require much creativity. For that reason, Django entirely automates creation of admin interfaces
for models.

« The admin isn’t intended to be used by site visitors. It’s for site managers.

Creating an admin user-
» First we’ll need to create a user who can login to the admin site. Run the following command:
>python manage.py createsuperuser

Enter your desired username and press enter.

Username: admin
You will then be prompted for your desired email address:

edunet

Introducing the Django Admin

Creating an admin user-(Continued)

Email address: admin@example.com

The final step is to enter your password. You will be asked to enter your password twice, the second time as
a confirmation of the first.

Pas SWO rd : *kkkkkkkkk
Password (again); *x*xxiikk

Superuser created successfully.

e d U QHQOHT

Introducing the Django Admin

Start the development server
The Django admin site is activated by default. Let’s start the development server and explore it.
If the server is not running start it like so:

>python manage.py runserver

Now, open a web browser and go to “/admin/” on your local domain — e.qg., http://127.0.0.1:8000/admin/.
You should see the admin’s login screen:

Django administration

Since translation is turned on by default, if you set LANGUAGE_CODE, the login screen will be displayed
in the given language (if Django has appropriate translations).

edunet

foundation

Introducing the Django Admin

Enter the admin site:

Now, try logging in with the superuser account you created in the previous step. You should see the
Django admin index page:

Dja ngo administration WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD / LOG OUT

Site administration

AUTHENTICATION AND AUTHORIZATION .
Recent Actions

Groups + Add # Change

Users + Add " Change My Actions

None available

You should see a few types of editable content: groups and users. They are provided by
django.contrib.auth, the authentication framework shipped by Django.

edunet

foundation

Introducing the Django Admin

Make the poll app modifiable in the admin:
» But where’s our poll app? It’s not displayed on the admin index page.

« Only one more thing to do: we need to tell the admin that Question objects have an admin interface. To do this, open the
polls/admin.py file, and edit it to look like this:

from django.contrib import admin
from .models import Question

admin.site.register(Question)

edunet

Introducing the Django Admin

Explore the free admin functionality
Now that we've registered Question, Django knows that it should be displayed on the admin index page:

Site administration

AUTHENTICATION AND AUTHORIZATION .
Recent Actions

Groups + Add #' Change

Users + Add ¢ Change My Actions
None available

Questions + Add #' Change

 Click “Questions”. Now you’re at the “change list” page for questions.

edunet

Introducing the Django Admin

» Explore the free admin functionality

» This page displays all the questions in the database and lets you choose one to change it. There’s the
“What's up?” question we created earlier:

Home ; Polls » Questions

Select question to change
Action: | =e==me——- 41 Go | 0of1selected
QUESTION
What's up?
1 question

 Click the “What’s up?” question to edit it:

edunet

foundation

Introducing the Django Admin

Explore the free admin functionality
Edit question :

Home : Polls > Questions » What's up?

Change question

Question text: What's up?

Date published: Date: 2015-09-06 Today

Time: 21:16:22 Now | ®

Save and add another Save and continue editing

edunet

Introducing the Django Admin

» Things to note here:
» The form is automatically generated from the Question model.

» The different model field types (DateTimeField, CharField) correspond to the appropriate
HTML input widget. Each type of field knows how to display itself in the Django admin.

» Each DateTimeField gets free JavaScript shortcuts. Dates get a “Today” shortcut and
calendar popup, and times get a “Now” shortcut and a convenient popup that lists commonly
entered times.

edunet

Introducing the Django Admin

* things to note here (Continued)-

The bottom part of the page gives you a couple of options:

Save — Saves changes and returns to the change-list page for this type of object.

Save and continue editing — Saves changes and reloads the admin page for this object.
Save and add another — Saves changes and loads a new, blank form for this type of object.
Delete — Displays a delete confirmation page.

edunet

Views and URL mapping, HttpRequest &
HttpResponse,
GET & POST Method

Disclaimer: The content is curated for educational purposes only.
© Edunet Foundation. All rights reserved.

edunet

Views

URL

Y

A view function, or view for short, is a
Python function that takes a web request
and returns a web response.

« This response can be the HTML contents of
a web page, or a redirect, or a 404 error, or
an XML document, or an image , or
anything that a web browser can display.

« The convention is to put views in a file
called views.py file in your project or
application directory.

USER

Process Data

Image Source: https://media.geeksforgeeks.org/wp-
content/uploads/20200124153519/django-views.jpg

https://media.geeksforgeeks.org/wp-content/uploads/20200124153519/django-views.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20200124153519/django-views.jpg

edunef
Creating simple View : Example

Here’s a view that returns the current date and time, as an HTML document: learndjango/
VIEWS.pY

import Http Response from django
from django.http import HttpResponse
get datetime
import datetime
create a function
def date_view(request):

fetch date and time

now = datetime.datetime.now()

convert to string

html = "Time is {}".format(now)

return response

return Hﬂpqupnnqp(hfml)

e d U [Jﬂgﬁj

Creating simple View: Example Explanation

« <First, we import the class HttpResponse from the django.http module, along with
Python’s datetime library.

* Next, we define a function called date_view. This is the view function. Each view
function takes an HttpRequest object as its first parameter, which is typically named
request.

» The view returns an HttpResponse object that contains the generated response. Each
view function is responsible for returning an HttpResponse object.

URL Mapping : Example

Let’s get this view to working, in learndjango/urls.py
from django.contrib import admin
from django.urls import path,include

from .views import date_view

urlpatterns = [
#path(‘admin/', admin.site.urls),
path(", date_view),

Output for DateTime example

e « Now, visit http://127.0.0.1:8000/

oooooooooo

http://127.0.0.1:8000/

edunet

HttpRequest & HttpResponse,

Disclaimer: The content is curated for educational purposes only.
© Edunet Foundation. All rights reserved.

edunet
HttpRequest & HttpResponse

Request and response objects : Overview

» Django uses request and response objects to pass state through the system.

 When a page is requested, Django creates an HttpRequest object that contains
metadata about the request. Then Django loads the appropriate view, passing the

HttpRequest as the first argument to the view function. Each view is responsible for
returning an HttpResponse object.

e d U [Jﬂgﬁj

HttpRequest

HttpRequest objects

class HttpRequest

Attributes
All attributes should be considered read-only, unless stated otherwise.

HttpRequest.scheme
A string representing the scheme of the request (http or https usually).

edunet

HttpRequest

HttpRequest objects (Continued)

HttpRequest.body

The raw HTTP request body as a bytestring. This is useful for processing data in
different ways than conventional HTML forms: binary images, XML payload etc. For
processing conventional form data, use HttpRequest.POST.

You can also read from an HttpRequest using a file-like interface with
HttpRequest.read() or HttpRequest.readline(). Accessing the body attribute after
reading the request with either of these I/O stream methods will produce a
RawPostDataException.

HttpRequest.path

A string representing the full path to the requested page, not including the scheme,
domain, or query string.

Example: "/music/bands/the_beatles/"

edunet

HttpRequest

HttpRequest objects (Continued)

HttpRequest.path_info

Under some web server configurations, the portion of the URL after the host name is
split up into a script prefix portion and a path info portion. The path_info attribute
always contains the path info portion of the path, no matter what web server is being
used. Using this instead of path can make your code easier to move between test and
deployment servers.

For example, if the WSGIScriptAlias for your application is set to "/minfo", then path
might be "/minfo/music/bands/the_beatles/" and path_info would be
"/music/bands/the beatles/".

oooooooooo

HttpRequest

HttpRequest objects (Continued)

HttpRequest.method
A string representing the HTTP method used in the request. This is guaranteed to be

uppercase. For example:

if request.method == 'GET"
do_something()

elif request.method == 'POST"
do_something_else()

edunet

HttpRequest

HttpRequest objects (Continued)

HttpRequest.encoding
A string representing the current encoding used to decode form submission data (or

None, which means the DEFAULT_CHARSET setting is used). You can write to this
attribute to change the encoding used when accessing the form data. Any subsequent
attribute accesses (such as reading from GET or POST) will use the new encoding
value. Useful if you know the form data is not in the DEFAULT CHARSET encoding.

HttpRequest.content_type
A string representing the MIME type of the request, parsed from the CONTENT_TYPE

header.

edunet

HttpRequest

HttpRequest objects (Continued)

HttpRequest.POST

A dictionary-like object containing all given HTTP POST parameters, providing that the
request contains form data. See the QueryDict documentation below. If you need to
access raw or non-form data posted in the request, access this through the
HttpRequest.body attribute instead.

It's possible that a request can come in via POST with an empty POST dictionary — if,
say, a form is requested via the POST HTTP method but does not include form data.
Therefore, you shouldn’t use if request.POST to check for use of the POST method;
instead, use if request.method == "POST" (see HttpRequest.method).

POST does not include file-upload information. See FILES.

edunet

HttpRequest

HttpRequest objects (Continued)

HttpRequest.content_params
A dictionary of key/value parameters included in the CONTENT_TYPE header.

HttpRequest.GET
A dictionary-like object containing all given HTTP GET parameters. See the QueryDict

documentation below.

HttpRequest.COOKIES
A dictionary containing all cookies. Keys and values are strings.

edunet

HttpRequest

HttpRequest objects (Continued)

HttpRequest.FILES
A dictionary-like object containing all uploaded files. Each key in FILES is the name
from the <input type="file" name="">. Each value in FILES is an UploadedFile.

See Managing files for more information.
FILES will only contain data if the request method was POST and the <form> that

posted to the request had enctype="multipart/form-data". Otherwise, FILES will be a
blank dictionary-like object.

e d U QHQOHT

HttpRequest

HttpRequest objects (Continued)

HttpRequest.META

A dictionary containing all available HTTP headers. Available headers depend on the client and
server, but here are some examples:

CONTENT_LENGTH — The length of the request body (as a string).
CONTENT_TYPE - The MIME type of the request body.
HTTP_ACCEPT — Acceptable content types for the response.
HTTP_ACCEPT_ENCODING — Acceptable encodings for the response.
HTTP_ACCEPT_LANGUAGE — Acceptable languages for the response.
HTTP_HOST — The HTTP Host header sent by the client.
HTTP_REFERER — The referring page, if any.

HTTP_USER_AGENT — The client’s user-agent string.
QUERY_STRING — The query string, as a single (unparsed) string.
REMOTE_ADDR — The IP address of the client.

REMOTE_HOST - The hostname of the client.

REMOTE_USER - The user authenticated by the web server, if any.
REQUEST_ METHOD — A string such as "GET" or "POST".
SERVER_NAME - The hostname of the server.

SERVER_PORT — The port of the server (as a string).

edunet

HttpRequest

HttpRequest objects (Continued)

HttpRequest.headers
A case insensitive, dict-like object that provides access to all HTTP-prefixed headers
(plus Content-Length and Content-Type) from the request.

HttpRequest.resolver_match

An instance of ResolverMatch representing the resolved URL. This attribute is only set
after URL resolving took place, which means it's available in all views but not in
middleware which are executed before URL resolving takes place (you can use it in
process_view() though).

edunet
HttpRequest

HttpRequest objects : Attributes set by application code

Django doesn’t set these attributes itself but makes use of them if set by your
application.

HttpRequest.current_app
The url template tag will use its value as the current_app argument to reverse().

HttpRequest.urlconf
This will be used as the root URLconf for the current request, overriding the
ROOT_URLCONEF setting. See How Django processes a request for details.

urlconf can be set to None to revert any changes made by previous middleware and
return to using the ROOT_URLCONF.

oooooooooo

HttpRequest

HttpRequest objects : Attributes set by application code (Continued)

HttpRequest.exception_reporter_filter
This will be used instead of DEFAULT_EXCEPTION_REPORTER_FILTER for the
current request. See Custom error reports for details.

HttpRequest.exception_reporter_class
This will be used instead of DEFAULT_EXCEPTION_REPORTER for the current
request. See Custom error reports for details.

edunet
HttpRequest

HttpRequest objects :Methods

HttpRequest.get_host()

Returns the originating host of the request using information from the

HTTP_X FORWARDED_ HOST (if USE_X FORWARDED HOST is enabled) and
HTTP_HOST headers, in that order. If they don’t provide a value, the method uses a
combination of SERVER_NAME and SERVER_PORT as detailed in PEP 3333.

Example: "127.0.0.1:8000"

HttpRequest.get_port()

Returns the originating port of the request using information from the

HTTP_X FORWARDED_PORT (if USE_X FORWARDED_PORT is enabled) and
SERVER_PORT META variables, in that order.

edunet
HttpRequest
HttpRequest objects :Methods (Continued)

HttpRequest.get_full _path()
Returns the path, plus an appended query string, if applicable.

Example: "/music/bands/the_beatles/?print=true"

HttpRequest.get full path_info()
Like get_full_path(), but uses path_info instead of path.

Example: "/minfo/music/bands/the beatles/?print=true"

edunet

HttpRequest
HttpRequest objects :Methods (Continued)

HttpRequest.build _absolute uri(location=None)
Returns the absolute URI form of location. If no location is provided, the location will be
set to request.get_full_path().

If the location is already an absolute URI, it will not be altered. Otherwise the absolute
URI is built using the server variables available in this request.

edunet

HttpRequest
HttpRequest objects :Methods (Continued)

HttpRequest.get_signed_cookie(key, default=RAISE_ERROR, salt=",
max_age=None)

Returns a cookie value for a signed cookie, or raises a
django.core.signing.BadSignature exception if the signature is no longer valid. If you
provide the default argument the exception will be suppressed and that default value
will be returned instead.

The optional salt argument can be used to provide extra protection against brute force
attacks on your secret key. If supplied, the max_age argument will be checked against
the signed timestamp attached to the cookie value to ensure the cookie is not older
than max_age seconds.

edunet
HttpRequest
HttpRequest objects :Methods (Continued)

HttpRequest.is_secure()
Returns True if the request is secure; that is, if it was made with HTTPS.

HttpRequest.accepts(mime_type)
Returns True if the request Accept header matches the mime_type argument

edunef
HitpResponse

HttpResponse objects

class HttpResponse

In contrast to HttpRequest objects, which are created automatically by Django,
HttpResponse objects are your responsibility. Each view you write is responsible for
instantiating, populating, and returning an HttpResponse.

The HttpResponse class lives in the django.http module.

edunet

HttpResponse
HttpResponse objects

Usage

Passing strings

Typical usage is to pass the contents of the page, as a string, bytestring, or
memoryview, to the HttpResponse constructor:

>>> from django.http import HttpResponse
>>> response = HttpResponse("Here's the text of the web page.")

But if you want to add content incrementally, you can use response as a file-like object:

>>> response = HttpResponse()
>>> response.write("<p>Here's the text of the web page.</p>")

edunet

HttpResponse

HttpResponse objects

Usage

Passing iterators

Finally, you can pass HttpResponse an iterator rather than strings. HttpResponse will
consume the iterator immediately, store its content as a string, and discard it. Objects
with a close() method such as files and generators are immediately closed.

If you need the response to be streamed from the iterator to the client, you must use
the StreamingHttpResponse class instead.

edunet

HttpResponse

HttpResponse objects

Setting header fields
To set or remove a header field in your response, use HttpResponse.headers:

>>> response = HttpResponse()
>>> response.headers['/Age'] = 120
>>> del response.headers['Age’]

You can also manipulate headers by treating your response like a dictionary:

>>> response = HttpResponse()

>>> response['Age'] = 120

>>> del response['Age’]

This proxies to HttpResponse.headers, and is the original interface offered by
HttpResponse.

e d U [Jﬂgﬁj

HttpResponse

HttpResponse objects
Setting header fields (continued)
When using this interface, unlike a dictionary, del doesn’t raise KeyError if the header
field doesn’t exist.
You can also set headers on instantiation:

>>> response = HttpResponse(headers={'Age". 120})

edunet

HttpResponse

HttpResponse objects

Telling the browser to treat the response as a file attachment

To tell the browser to treat the response as a file attachment, set the Content-Type and
Content-Disposition headers. For example, this is how you might return a Microsoft
Excel spreadsheet:

>>> response = HttpResponse(my_data, headers={
'‘Content-Type'": 'application/vnd.ms-excel’,
'‘Content-Disposition': 'attachment; filename="foo.xls"

)

edunet

HttpResponse

HttpResponse objects : Attributes

HttpResponse.content
A bytestring representing the content, encoded from a string if necessary.

HttpResponse.headers

New in Django 3.2.

A case insensitive, dict-like object that provides an interface to all HTTP headers on the
response. See Setting header fields.

HttpResponse.charset

A string denoting the charset in which the response will be encoded. If not given at
HttpResponse instantiation time, it will be extracted from content_type and if that is
unsuccessful, the DEFAULT _CHARSET setting will be used.

edunet

HttpResponse

HttpResponse objects : Attributes

HttpResponse.status_code
The HTTP status code for the response.

HttpResponse.reason_phrase
The HTTP reason phrase for the response. It uses the HTTP standard’s default reason
phrases.

HttpResponse.streaming
This is always False.

HttpResponse.closed
True if the response has been closed.

edunet

HttpResponse

HttpResponse objects : Attributes

HttpResponse. setitem__ (header, value)
Sets the given header name to the given value. Both header and value should be
strings.

HttpResponse. delitem__ (header)
Deletes the header with the given name. Fails silently if the header doesn’t exist. Case-
iInsensitive.

HttpResponse. getitem__ (header)
Returns the value for the given header name. Case-insensitive.

HttpResponse.get(header, alternate=None)
Returns the value for the given header, or an alternate if the header doesn’t exist.

edunet

HttpResponse
HttpResponse objects : Attributes

HttpResponse.has header(header)
Returns True or False based on a case-insensitive check for a header with the given

name.

HttpResponse.items()
Acts like dict.items() for HTTP headers on the response.

HttpResponse.setdefault(header, value)
Sets a header unless it has already been set.

edunet

foundation

HttpResponse
HttpResponse objects : Attributes

HttpResponse.set_cookie(key, value=", max_age=None, expires=None, path='/', domain=None,
secure=False, httponly=False, samesite=None)f

Sets a cookie.

max_age should be an integer number of seconds, or None (default) if the cookie should last only as long as the
client’s browser session. If expires is not specified, it will be calculated.

expires should either be a string in the format "Wdy, DD-Mon-YY HH:MM:SS GMT" or a datetime.datetime object in
UTC. If expires is a datetime object, the max_age will be calculated.

Use domain if you want to set a cross-domain cookie. For example, domain="example.com” will set a cookie that is
readable by the domains www.example.com, blog.example.com, etc. Otherwise, a cookie will only be readable by
the domain that set it.

Use secure=True if you want the cookie to be only sent to the server when a request is made with the https scheme.
Use httponly=True if you want to prevent client-side JavaScript from having access to the cookie.

HttpOnly is a flag included in a Set-Cookie HTTP response header. It's part of the RFC 6265 standard for cookies
and can be a useful way to mitigate the risk of a client-side script accessing the protected cookie data.

Use samesite="Strict' or samesite='Lax’ to tell the browser not to send this cookie when performing a cross-origin
request. SameSite isn’t supported by all browsers, so it's not a replacement for Django’s CSRF protection, but rather
a defense in depth measure.

edunet

foundation

HttpResponse
HttpResponse objects : Methods

HttpResponse.__init__ (content=b", content_type=None, status=200, reason=None, charset=None,

headers=None)
Instantiates an HttpResponse object with the given page content, content type, and headers.

content is most commonly an iterator, bytestring, memoryview, or string. Other types will be converted to a bytestring
by encoding their string representation. Iterators should return strings or bytestrings and those will be joined together
to form the content of the response.

content_type is the MIME type optionally completed by a character set encoding and is used to fill the HTTP
Content-Type header. If not specified, it is formed by 'text/html' and the DEFAULT_CHARSET settings, by default:
"text/html; charset=utf-8".

status is the HTTP status code for the response. You can use Python’s http.HTTPStatus for meaningful aliases,
such as HTTPStatus.NO_CONTENT.

reason is the HTTP response phrase. If not provided, a default phrase will be used. charset is the charset in which
the response will be encoded. If not given it will be extracted from content_type, and if that is unsuccessful, the
DEFAULT_CHARSET setting will be used.headers is a dict of HTTP headers for the response.TTP status code for
the response.

edunet

HttpResponse

HttpResponse objects : Attributes

HttpResponse.delete cookie(key, path='/', domain=None, samesite=None)
Deletes the cookie with the given key. Fails silently if the key doesn’t exist.

Due to the way cookies work, path and domain should be the same values you used in
set_cookie() — otherwise the cookie may not be deleted.

HttpResponse.close()
This method is called at the end of the request directly by the WSGI server.

HttpResponse.write(content)
This method makes an HttpResponse instance a file-like object.

HttpResponse.flush()
This method makes an HttpResponse instance a file-like object.

edunet

HttpResponse

HttpResponse objects : Attributes

HttpResponse.tell()
This method makes an HttpResponse instance a file-like object.

HttpResponse.getvalue()
Returns the value of HttpResponse.content. This method makes an HttpResponse
instance a stream-like object.

HttpResponse.readable()
Always False. This method makes an HttpResponse instance a stream-like object.

HttpResponse.seekable()
Always False. This method makes an HttpResponse instance a stream-like object.

HttpResponse.writable()
Always True. This method makes an HttpResponse instance a stream-like object.

edunet

HttpResponse

HttpResponse subclasses

Django includes a number of HitpResponse subclasses that handle different types of
HTTP responses. Like HitpResponse, these subclasses live in django.http.

class HttpResponseRedirect

The first argument to the constructor is required — the path to redirect to. This can be a
fully qualified URL (e.g. 'https://www.yahoo.com/search/'), an absolute path with no
domain (e.g. '/search/'), or even a relative path (e.g. 'search/'). In that last case, the
client browser will reconstruct the full URL itself according to the current path. See
HttpResponse for other optional constructor arguments. Note that this returns an HTTP
status code 302.

url
This read-only attribute represents the URL the response will redirect to (equivalent to

the Location response header).

edunet

HttpResponse

HttpResponse subclasses

class HttpResponsePermanentRedirect
Like HttpResponseRedirect, but it returns a permanent redirect (HTTP status code
301) instead of a “found” redirect (status code 302).

class HttpResponseNotModified

The constructor doesn’t take any arguments and no content should be added to this
response. Use this to designate that a page hasn’t been modified since the user’s last
request (status code 304).

class HttpResponseBadRequest
Acts just like HttpResponse but uses a 400 status code.

edunet

HttpResponse

HttpResponse subclasses

class HttpResponseNotFound
Acts just like HttpResponse but uses a 404 status code.

class HttpResponseForbidden
Acts just like HttpResponse but uses a 403 status code.

class HttpResponseNotAllowed
Like HttpResponse, but uses a 405 status code. The first argument to the constructor is
required: a list of permitted methods (e.g. [GET', 'POST').

e d U [Jﬂgﬁj

HttpResponse

HttpResponse subclasses

class HttpResponseGone
Acts just like HttpResponse but uses a 410 status code.

class HttpResponseServerError
Acts just like HttpResponse but uses a 500 status code.

edunet

foundation

GET & POST Method

Disclaimer: The content is curated for educational purposes only.
© Edunet Foundation. All rights reserved.

edunet
Get and Post Method

GET and POST

Django’s login form is returned using the POST method, in which the browser bundles
up the form data, encodes it for transmission, sends it to the server, and then receives
back its response.

GET, by contrast, bundles the submitted data into a string, and uses this to compose a
URL. The URL contains the address where the data must be sent, as well as the data
keys and values. You can see this in action if you do a search in the Django
documentation, which will produce a URL of the form
https://docs.djangoproject.com/search/?g=formsé&release=1.

GET and POST are typically used for different purposes.

https://docs.djangoproject.com/search/?q=forms&release=1

edunet

Get and Post Method
GET and POST

Any request that could be used to change the state of the system - for example, a
request that makes changes in the database - should use POST. GET should be used
only for requests that do not affect the state of the system.

GET would also be unsuitable for a password form, because the password would
appear in the URL, and thus, also in browser history and server logs, all in plain text.
Neither would it be suitable for large quantities of data, or for binary data, such as an
image. A web application that uses GET requests for admin forms is a security risk: it
can be easy for an attacker to mimic a form’s request to gain access to sensitive parts
of the system. POST, coupled with other protections like Django’s CSRF protection
offers more control over access.

edunet

Get and Post Method
HTML Form

In HTML, a form is a collection of elements inside <form>...</form> that allow a visitor
to do things like enter text, select options, manipulate objects or controls, and so on,
and then send that information back to the server.

Some of these form interface elements - text input or checkboxes - are built into HTML
itself. Others are much more complex; an interface that pops up a date picker or allows
you to move a slider or manipulate controls will typically use JavaScript and CSS as
well as HTML form <input> elements to achieve these effects.

As well as its <input> elements, a form must specify two things:

where: the URL to which the data corresponding to the user’s input should be returned
how: the HTTP method the data should be returned by

edunet

Get and Post Method
HTML Form (Continued)

As an example, the login form for the Django admin contains several <input> elements:
one of type="text" for the username, one of type="password" for the password, and one
of type="submit" for the “Log in” button. It also contains some hidden text fields that the
user doesn’t see, which Django uses to determine what to do next.

It also tells the browser that the form data should be sent to the URL specified in the
<form>’s action attribute - /admin/ - and that it should be sent using the HTTP
mechanism specified by the method attribute - post.

When the <input type="submit" value="Log in"> element is triggered, the data is
returned to /admin/.

edunet

Get and Post Method

Django’s role in forms

Handling forms is a complex business. Consider Django’s admin, where numerous items of data of
several different types may need to be prepared for display in a form, rendered as HTML, edited
using a convenient interface, returned to the server, validated and cleaned up, and then saved or
passed on for further processing.

Django’s form functionality can simplify and automate vast portions of this work, and can also do it
more securely than most programmers would be able to do in code they wrote themselves.

Django handles three distinct parts of the work involved in forms:
preparing and restructuring data to make it ready for rendering
creating HTML forms for the data

receiving and processing submitted forms and data from the client

It is possible to write code that does all of this manually, but Django can take care of it all for you.

edunet
Get and Post Method

Forms in Django-

We've described HTML forms briefly, but an HTML <form> is just one part of the
machinery required.

In the context of a web application, ‘form’ might refer to that HTML <form>, or to the

Django Form that produces it, or to the structured data returned when it is submitted, or
to the end-to-end working collection of these patrts.

edunet

Get and Post Method

The Django Form class

At the heart of this system of components is Django’s Form class. In much the same way that a
Django model describes the logical structure of an object, its behavior, and the way its parts are
represented to us, a Form class describes a form and determines how it works and appears.

In a similar way that a model class’s fields map to database fields, a form class’s fields map to
HTML form <input> elements. (A ModelForm maps a model class’s fields to HTML form <input>
elements via a Form; this is what the Django admin is based upon.)

A form’s fields are themselves classes; they manage form data and perform validation when a form
Is submitted. A DateField and a FileField handle very different kinds of data and have to do different
things with it.

A form field is represented to a user in the browser as an HTML “widget” - a piece of user interface
machinery. Each field type has an appropriate default Widget class, but these can be overridden as
required.

edunet

Get and Post Method

Instantiating, processing, and rendering forms
When rendering an object in Django, we generally:

get hold of it in the view (fetch it from the database, for example)
pass it to the template context
expand it to HTML markup using template variables

Rendering a form in a template involves nearly the same work as rendering any other kind of object,
but there are some key differences.

In the case of a model instance that contained no data, it would rarely if ever be useful to do
anything with it in a template. On the other hand, it makes perfect sense to render an unpopulated
form - that's what we do when we want the user to populate it.

So when we handle a model instance in a view, we typically retrieve it from the database. When
we’re dealing with a form we typically instantiate it in the view.

edunet

Get and Post Method

Instantiating, processing, and rendering forms (Continued)

When we instantiate a form, we can opt to leave it empty or pre-populate it, for
example with:

data from a saved model instance (as in the case of admin forms for editing)
data that we have collated from other sources
data received from a previous HTML form submission

The last of these cases is the most interesting, because it's what makes it possible for
users not just to read a website, but to send information back to it too.

edunet

Get and Post Method

Building a form

The work that needs to be done
Suppose you want to create a simple form on your website, in order to obtain the user’'s
name. You'd need something like this in your template:

<form action="/your-name/" method="post">
<label for="your_name">Your name: </label>
<input id="your_name" type="text" name="your_name" value="{{ current_name }}">
<input type="submit" value="OK">

</form>

This tells the browser to return the form data to the URL /your-name/, using the POST
method. It will display a text field, labeled “Your name:”, and a button marked “OK”. If

the template context contains a current_name variable, that will be used to pre-fill the

your_name field.

edunet

Get and Post Method
Building a form (Continued)

You'll need a view that renders the template containing the HTML form, and that can
supply the current_name field as appropriate.

When the form is submitted, the POST request which is sent to the server will contain
the form data.

Now you’ll also need a view corresponding to that /your-name/ URL which will find the
appropriate key/value pairs in the request, and then process them.

This is a very simple form. In practice, a form might contain dozens or hundreds of
fields, many of which might need to be pre-populated, and we might expect the user to
work through the edit-submit cycle several times before concluding the operation.

We might require some validation to occur in the browser, even before the form is
submitted; we might want to use much more complex fields, that allow the user to do
things like pick dates from a calendar and so on.

At this point it's much easier to get Django to do most of this work for us.

edunet

Get and Post Method

Building a form in Django
The Form class

We already know what we want our HTML form to look like. Our starting point for it in
Django is this:

forms.py

from django import forms
class NameForm(forms.Form):
your_name = forms.CharField(label="Your name’, max_length=100)

This defines a Form class with a single field (your_name). We've applied a human-
friendly label to the field, which will appear in the <label> when it’s rendered (although
in this case, the label we specified is actually the same one that would be generated
automatically if we had omitted it).

edunet

Get and Post Method
Building a form in Django (Continued)

The field’s maximum allowable length is defined by max_length. This does two things. It puts a
maxlength="100" on the HTML <input> (so the browser should prevent the user from entering
more than that number of characters in the first place). It also means that when Django receives the
form back from the browser, it will validate the length of the data.

A Form instance has an is_valid() method, which runs validation routines for all its fields. When this
method is called, if all fields contain valid data, it will:

* return True

» place the form’s data in its cleaned_data attribute.

The whole form, when rendered for the first time, will look like:

<label for="your_name">Your name: </label>
<input id="your_name" type="text" name="your_name" maxlength="100" required>

Note that it does not include the <form> tags, or a submit button. We’ll have to provide those
ourselves in the template.

edunet

foundation

Get and Post Method
Building a form in Django (Continued) : The view

Form data sent back to a Django website is processed by a view, generally the same view
which published the form. This allows us to reuse some of the same logic.
To handle the form we need to instantiate it in the view for the URL where we want it to be

published:
from django.http import HttpResponseRedirect
from django.shortcuts import render

from .forms import NameForm

def get_name(request):
if this is a POST request we need to process the form data
if request.method == 'POST":
create a form instance and populate it with data from the request:
form = NameForm(request.POST)
check whether it's valid:
if form.is_valid():
process the data in form.cleaned_data as required
...
redirect to a new URL:
return HttpResponseRedirect('/thanks/")

if a GET (or any other method) we'll create a blank form
else:

form = NameForm()
return render(request, 'name.html’, {'form': form})

edunet

Get and Post Method
Building a form in Django : The view (Continued)

If we arrive at this view with a GET request, it will create an empty form instance and place it in the
template context to be rendered. This is what we can expect to happen the first time we visit the

URL.

If the form is submitted using a POST request, the view will once again create a form instance and
populate it with data from the request: form = NameForm(request.POST) This is called “binding
data to the form” (it is now a bound form).

We call the form’s is_valid() method; if it's not True, we go back to the template with the form. This
time the form is no longer empty (unbound) so the HTML form will be populated with the data
previously submitted, where it can be edited and corrected as required.

If is_valid() is True, we’ll now be able to find all the validated form data in its cleaned_data attribute.
We can use this data to update the database or do other processing before sending an HTTP
redirect to the browser telling it where to go next.

edunet

Get and Post Method
Building a form in Django (Continued) : The template

We don’t need to do much in our name.html template:

<form action="/your-name/" method="post">
{% csrf_token %}
{{ form }}
<input type="submit" value="Submit">
</form>

All the form’s fields and their attributes will be unpacked into HTML markup from that {{
form }} by Django’s template language.

We now have a working web form, described by a Django Form, processed by a view,
and rendered as an HTML <form>.

edunet

Get and Post Method

Working with form templates

All you need to do to get your form into a template is to place the form instance into
the template context. So if your form is called form in the context, {{ form }} will render
its <label> and <input> elements appropriately.

Form rendering options:
There are other output options though for the <label>/<input> pairs:

« {{form.as_table }} will render them as table cells wrapped in <tr> tags
« {{form.as_p }} will render them wrapped in <p> tags
« {{form.as_ul }} will render them wrapped in tags

* Note that you'll have to provide the surrounding <table> or elements yourself.

edunet

Template, Render, Views, Context
Template Editing

Disclaimer: The content is curated for educational purposes only.
© Edunet Foundation. All rights reserved.

Templates

Templates are the third and most important part
of Django’s MVT Structure. A template in Django
Is basically written in HTML, CSS, and JavaScript
in a .html file. Django framework efficiently
handles and generates dynamically HTML web
pages that are visible to the end-user.
Django mainly functions with a backend so, in
order to provide a frontend and provide a layout
to our website, we use templates.
There are two methods of adding the template to
our website depending on our needs.
1) We can use a single template directory which
will be spread over the entire project.
2) For each app of our project, we can create a
different template directory.

URL

USER Process Data

Image Source: https://media.geeksforgeeks.org/wp-

content/uploads/20200124153519/django-views.jpg

https://media.geeksforgeeks.org/wp-content/uploads/20200124153519/django-views.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20200124153519/django-views.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20200124153519/django-views.jpg

e d U [Jﬂgﬁj

The Django template language

e A Django template is a text document or a Python string marked-up using the
Django template language.

e Some constructs are recognized and interpreted by the template engine.

e The main ones are variables and tags.

The main characteristics of Django Template language are Variables, Tags, Filters,
and Comments.

edunet

Let us discuss main characteristics one by one

Variables
Variables output a value from the context, which is a dict-like object mapping keys
to values. The context object we sent from the view can be accessed in the
template using variables of Django Template.
Syntax
{{ variable_name }}
Example
-Variables are surrounded by {{ and }} like this:
Eg.-My first name is {{ first_name }}. My last name is {{ last_name }}.
With a context of {'first_name’: ‘Pawan’, ‘last_name’: ‘Kumar’}, this template
renders to:
My first name is Pawan. My last name is Kumar.

Let us discuss main characteristics one by one (Continued)

Tags
It provide arbitrary logic in the rendering process
Syntax
{% tag_name %}

Example

Tags are surrounded by {% and %} like this:
{% csrf_token %}

Most tags accept arguments, for example :
{% cycle 'odd' 'even' %}

fffffffffff

edunet

Let us discuss main characteristics one by one (Continued)

Filters

Django Template Engine provides filters that are used to transform the values of
variables and tag arguments.

Tags can’t modify the value of a variable whereas filters can be used for incrementing
the value of a variable or modifying it to one’s own need.

Syntax
{{ variable_name | filter_name }}
Filters can be “chained.” The output of one filter is applied to the next.

{{ text|escapellinebreaks }} is a common idiom for escaping text contents, then
converting line breaks to <p> tags.

Example
{{ value | length }}

‘ J 1 J [Py €

If value is ['a@’, ‘b’, ‘c’, ‘d’], the output will be 4.

e d U [Jﬂgﬁj

Let us discuss main characteristics one by one (Continued)

Comments
Template ignores everything between {% comment %} and {% end comment %}.
An optional note may be inserted in the first tag.

For example, this is useful when commenting out code for documenting why the code
was disabled.

Syntax
{% comment '‘comment_name' %}
{% endcomment %}

Example :
{% comment "Optional note" %}

Commented out text with {{ create date|date:"c" }}
{% endcomment %}

e d U [Jﬂgﬁj

Let us discuss main characteristics one by one (Continued)

Template Inheritance

Template inheritance allows you to build a base “skeleton” template that contains all the
common elements of your site and defines blocks that child templates can override.
extends tag is used for the inheritance of templates in Django. One needs to repeat the
same code again and again. Using extends we can inherit templates as well as
variables.

Syntax
{% extends 'template_name.html' %]}

fffffffffff

Let us discuss main characteristics one by one (Continued)

Template Inheritance
Example :
assume the following directory structure:
dird/
template.html
base2.html
my/
base3.html
basel.html

In template.html, the following paths would be valid:
{% extends "./base2.html" %}

{% extends "../basel.html" %}

{% extends "./my/base3.html" %}

edunet

foundation

Example on Django Template : Let us create one template and
render it .

Stepl) Create view.py

import Http Response from django
from django.shortcuts import render

create a function
def learn_view(request):
create a dictionary to pass
data to the template
context ={
"data":"Updating from the list",
"list":['Data Science', 'Python’, 'Django’, 'HTML5','JavaScript’]
}
return response with template and context
return render(request, "learn.html”, context)

Example on Django Template : Let us create one template and
render it .

Step2) URL Mapping: open urls.py

from django.urls import path

importing views from views..py
from .views import learn_view

urlpatterns = |
path(", learn_view),

]

oooooooooo

e d U QHQOHT

Example on Django Template : Let us create one template and render it .
Step3) Create template

Create folder named as template and create new file names learn.htmi

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="ie=edge">
<titte>Homepage</title>
</head>
<body>
<h1>Welcome to Learn Django.</h1>
<p> Data is {{ data }}</p>
<h4>List is </h4>

{% for i in list %}
{{ i }}
{% endfor %}
</body>
</html|>

Example on Django Template : Let us create one template and
render it .

Step4) Open settings.py and Configure TEMPLATES section

-Copy path of your template directory and paste under TEMPLATES section in
seetings.py

'DIRS": ['C:\Users\Hp\Desktop\learndjango\learndjango\templates'],

oooooooooo

Example on Django Template : Let us create one template and
render it .

Step5) check output : Visit http://127.0.0.1:8000/

@ 12700 % S D '_: H
P . (%) & A) - “ o o e o

Welcome to Learn Django.

oooooooooo

edunet

SQL operations in Django
Django Models

Disclaimer: The content is curated for educational purposes only.
© Edunet Foundation. All rights reserved.

edunet

foundation

Django Models

Disclaimer: The content is curated for educational purposes only.
© Edunet Foundation. All rights reserved.

edunet

Django Models

A model is the single, definitive source of information about your data. It contains the
essential fields and behaviors of the data you're storing. Generally, each model maps to a
single database table.

A Django model is the built-in feature that Django uses to create tables, their fields, and
various constraints. In short, Django Models is the SQL of Database one uses with Django.

SQL (Structured Query Language) is complex and involves a lot of different queries for
creating, deleting, updating or any other stuff related to database. Django models simplify
the tasks and organize tables into models. Generally, each model maps to a single
database table.

Django models provide simplicity, consistency, version control and advanced metadata
handling.

Basics of a model include —
« Each model is a Python class that subclasses django.db.models.Model.
« Each attribute of the model represents a database field.
« With all of this, Django gives you an automatically-generated database-access API

e d U QHQOHT

Quick Example : Creating Models

e This example model defines a Person, which

) The Person model would create a
has a first_ name and last_name:

database table like this:

from django.db import models

class Person(models.Model):
first_name = models.CharField(max_length=30)
last name = models.CharField(max_length=30)

CREATE TABLE myapp_person (
"id" serial NOT NULL PRIMARY KEY,
"first_name" varchar(30) NOT NULL,
“last_name" varchar(30) NOT NULL

first_name and last_name are fields of the
model. Each field is specified as a class
attribute, and each attribute maps to a
database column.

edunet
Using Models

e Once you have defined your models, you need to tell Django you’re going to use those models.
Do this by editing your settings file and changing the INSTALLED APPS setting to add the
name of the module that contains your models.py.

e For example, if the models for your application live in the module myapp.models (the package
structure that is created for an application by the manage.py startapp script),
INSTALLED_APPS should read, in part:

INSTALLED_APPS = [
#...
'myapp’,
#...

]

* When you add new apps to INSTALLED_ APPS, be sure to run following commands for making
migrations

> manage.py makemigrations
> manage.py migrate

edunet

Fields : -creating model Fields

e The most important part of a model — and the only required part of a model — is the list of
database fields it defines. Fields are specified by class attributes. Be careful not to choose field
names that conflict with the models API like clean, save, or delete.

e Example:

from django.db import models

class Musician(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
instrument = models.CharField(max_length=100)

class Album(models.Model):
artist = models.ForeignKey(Musician, on_delete=models. CASCADE)
name = models.CharField(max_length=100)
release_date = models.DateField()
num_stars = models.IntegerField()

e d U [Jﬂgﬁj

Fields types : -creating model Fields

Each field in your model should be an instance of the appropriate Field class. Django uses the
field class types to determine a few things:

The column type, which tells the database what kind of data to store (e.g. INTEGER, VARCHAR,
TEXT).

The default HTML widget to use when rendering a form field (e.g. <input type="text">, <select>).
The minimal validation requirements, used in Django’s admin and in automatically-generated forms.

Django ships with dozens of built-in field types; you can find the complete list in the model field

reference.

Few Filed types are listed below:

AutoField IntegerField
CharField TextField
DateField FileField
ImageField EmailField

DecimalField JSONField

https://docs.djangoproject.com/en/4.0/ref/models/fields/
https://docs.djangoproject.com/en/4.0/ref/models/fields/

e d U [Jﬂgﬁj

Fields options : -creating model Fields

e Each field takes a certain set of field-specific arguments. For example, CharField (and its
subclasses) require a max_length argument which specifies the size of the VARCHAR database

field used to store the data.
e Here’s a quick summary of the most often-used ones:
1) null -If True, Django will store empty values as NULL in the database. Default is False.

2) blank -If True, the field is allowed to be blank. Default is False.

3) choices- A sequence of 2-tuples to use as choices for this field. If this is given, the default form
widget will be a select box instead of the standard text field and will limit choices to the choices
given.

A choices list looks like this:
YEAR_IN_SCHOOL_CHOICES = [
('FR', 'Freshman’),
('SO', 'Sophomore'),
('JR', Junior'),
('SR', 'Senior'),
('GR', 'Graduate’),]

edunet

SQL operations in Django

Disclaimer: The content is curated for educational purposes only.
© Edunet Foundation. All rights reserved.

Making queries :create model

edunet

foundation

Once you've created your data models, Django automatically gives you a database-abstraction API that

lets you create, retrieve, update and delete objects. we'll refer to the following models

from datetime import date
from django.db import models
class Blog(models.Model):
name = models.CharField(max_length=100)
tagline = models.TextField()
def __str__(self):
return self.name
class Author(models.Model):
name = models.CharField(max_length=200)
email = models.EmailField()
def __str__ (self):
return self.name
class Entry(models.Model):
blog = models.ForeignKey(Blog, on_delete=models. CASCADE)
headline = models.CharField(max_length=255)
body_text = models.TextField()
pub_date = models.DateField()
mod_date = models.DateField(default=date.today)
authors = models.ManyToManyField(Author)
number_of_comments = models.IntegerField(default=0)
number_of_pingbacks = models.IntegerField(default=0)
rating = models.IntegerField(default=5)
def __str__(self):

return self.headline

e d U [Jﬂgﬁj

Making queries : Creating objects

e A model class represents a database table, and an instance of that class represents a particular record
in the database table.

e To create an object, instantiate it using keyword arguments to the model class, then call save() to save it
to the database.

e Assuming models live in a file mysite/blog/models.py, here’s an example:

>>> from blog.models import Blog
>>> b = Blog(name="'Beatles Blog', tagline="All the latest Beatles news.')

>>> b.save()
This performs an INSERT SQL statement behind the scenes. Django doesn’t hit the database until you

explicitly call save().
The save() method has no return value.

e To create and save an object in a single step, use the create() method.

e d U QHQOT

Making queries : Saving changes to objects

e To save changes to an object that’s already in the database, use save().

e Given a Blog instance b5 that has already been saved to the database, this example changes its
name and updates its record in the database:
>>> b5.name = 'New name'

>>> b5.save()

e This performs an UPDATE SQL statement behind the scenes. Django doesn't hit the database
until you explicitly call save().

edunet

foundation

Making queries : Retrieving objects

° To retrieve objects from your database, construct a QuerySet via a Manager on your model class.

° A QuerySet represents a collection of objects from your database. It can have zero, one or many filters. Filters narrow down the query
results based on the given parameters. In SQL terms, a QuerySet equates to a SELECT statement, and a filter is a limiting clause such as
WHERE or LIMIT.

° You get a QuerySet by using your model’s Manager. Each model has at least one Manager, and it's called objects by default. Access it
directly via the model class, like so:

° >>> Blog.objects

° <django.db.models.manager.Manager object at ...>
° >>> p = Blog(name='Fo0', tagline='Bar’)

° >>> p.objects

° Traceback:

° AttributeError: "Manager isn't accessible via Blog instances.”

° The Manager is the main source of QuerySets for a model. For example, Blog.objects.all() returns a QuerySet that contains all Blog objects
in the database.

° Retrieving all objects{

° The simplest way to retrieve objects from a table is to get all of them. To do this, use the all() method on a Manager:
° >>> all_entries = Entry.objects.all()

° The all() method returns a QuerySet of all the objects in the database.

edunet

foundation

Making queries : Retrieving specific objects with filters

The QuerySet returned by all() describes all objects in the database table. Usually, though, you’ll need to select only a subset of the
complete set of objects.

To create such a subset, you refine the initial QuerySet, adding filter conditions. The two most common ways to refine a QuerySet
are:

filter(**kwargs)
-Returns a new QuerySet containing objects that match the given lookup parameters.

exclude(**kwargs)
-Returns a new QuerySet containing objects that do not match the given lookup parameters.
The lookup parameters (**kwargs in the above function definitions) should be in the format described in Field lookups below:
For example, to get a QuerySet of blog entries from the year 2006, use filter() like so:
Entry.objects filter(pub_date _year=2006)

With the default manager class, it is the same as:
Entry.objects.all().filter(pub_date year=2006)

edunet
Making queries :Retrieving a single object with get()

filter() will always give you a QuerySet, even if only a single object matches the query - in this case, it will
be a QuerySet containing a single element.

If you know there is only one object that matches your query, you can use the get() method on a
Manager which returns the object directly:

e >>>o0ne_entry = Entry.objects.get(pk=1)

e d U [Jﬂgﬁj

Making queries : Limiting QuerySets

e Use a subset of Python’s array-slicing syntax to limit your QuerySet to a certain number of results. This
is the equivalent of SQL’s LIMIT and OFFSET clauses.

e For example, this returns the first 5 objects (LIMIT 5):
e >>> Entry.objects.all()[:5]

e This returns the sixth through tenth objects (OFFSET 5 LIMIT 5):
e >>> Entry.objects.all()[5:10]
e Negative indexing (i.e. Entry.objects.all()[-1]) is not supported

edunet

foundation

Performing raw SQL queries

e Django gives you two ways of performing raw SQL queries: you can use Manager.raw() to perform raw
gueries and return model instances, or you can avoid the model layer entirely and execute custom SQL
directly.

e The raw() manager method can be used to perform raw SQL queries that return model instances:
° Manager.raw(raw_query, params=(), translations=None)

e This method takes a raw SQL query, executes it, and returns a django.db.models.query.RawQuerySet
instance. This RawQuerySet instance can be iterated over like a normal QuerySet to provide object
instances.

e _This is best illustrated with an example. Suppose you have the following model:
class Person(models.Model):
first_name = models.CharField(...)
last_name = models.CharField(...)
birth_date = models.DateField(...)

Performing raw SQL queries (Continued)

You could then execute custom SQL like so:
>>> for p in Person.objects.raw('SELECT * FROM myapp_person'):

print(p)
John Smith

Jane Jones

it's exactly the same as running Person.objects.all().

Index lookups:

raw() supports indexing, so if you need only the first result you can write:
>>> first_person = Person.objects.raw('SELECT * FROM myapp_person')[0]

e d U QHQOHT

e d U QHQOT

Django CRUD (Create, Retrieve, Update, Delete) Function Based
Views

e Django is a Python-based web framework which allows you to quickly create web application
without all of the installation or dependency problems that you normally will find with other
frameworks.

e Django is based on MVT (Model View Template) architecture and revolves around CRUD
(Create, Retrieve, Update, Delete) operations.

e CRUD means performing Create, Retrieve, Update and Delete operations on a table in a
database.

edunet

Django CRUD operations

Create — create or add new entries in a table in (W
the database.

Retrieve — read, retrieve, search, or view CRUD
existing entries as a list(List View) or retrieve a
particular entry in detail (Detail View)

Update — update or edit existing entries in a
table in the database

Delete — delete, deactivate, or remove existing Create Retrieve Update Delete
entries in a table in the database

.8 BG/

Image Source: https://media.geeksforgeeks.org/wp-
content/uploads/20200114185631/Untitled-Diagram-316-

1024x630.jpg

https://media.geeksforgeeks.org/wp-content/uploads/20200114185631/Untitled-Diagram-316-1024x630.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20200114185631/Untitled-Diagram-316-1024x630.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20200114185631/Untitled-Diagram-316-1024x630.jpg

edunet

Handling sessions, cookies
and
Working with JSON and AJAX

Disclaimer: The content is curated for educational purposes only.
© Edunet Foundation. All rights reserved.

edunet

foundation

Handling sessions

Disclaimer: The content is curated for educational purposes only.
© Edunet Foundation. All rights reserved.

edunet

What is session and How to use sessions:

The session framework lets you store and retrieve arbitrary data on a per-site-visitor
basis. It stores data on the server side and abstracts the sending and receiving of
cookies. Cookies contain a session ID — not the data itself (unless you’re using the
cookie based backend).

Django provides full support for anonymous sessions.

Enabling sessions
Sessions are implemented via a piece of middleware.
To enable session functionality, do the following:

Edit the MIDDLEWARE setting and make sure it contains
'django.contrib.sessions.middleware.SessionMiddleware'. The default settings.py created
by django-admin startproject has SessionMiddleware activated.

If you don’t want to use sessions, you might as well remove the SessionMiddleware line
from MIDDLEWARE and 'django.contrib.sessions' from your INSTALLED_APPS. It'll save
you a small bit of overhead.

edunet

Configuring the session engine

e By default, Django stores sessions in your database (using the model
django.contrib.sessions.models.Session). Though this is convenient, in some
setups it’s faster to store session data elsewhere, so Django can be configured to
store session data on your filesystem or in your cache.

Using database-backed sessions

e If you want to use a database-backed session, you need to add
‘django.contrib.sessions' to your INSTALLED_ APPS setting.

e Once you have configured your installation, run manage.py migrate to install the
single database table that stores session data.

edunet

Using file-based sessions

To use file-based sessions, set the SESSION_ENGINE setting to
"django.contrib.sessions.backends.file".

You might also want to set the SESSION_FILE PATH setting (which defaults to
output from tempfile.gettempdir(), most likely /tmp) to control where Django stores
session files. Be sure to check that your web server has permissions to read and
write to this location.

Using cookie-based sessions

To use cookies-based sessions, set the SESSION_ENGINE setting to
"django.contrib.sessions.backends.signed_cookies".

The session data will be stored using Django’s tools for cryptographic signing and
the SECRET_KEY setting.

edunet

Using sessions in views

When SessionMiddleware is activated, each HttpRequest object — the first argument to any
Django view function — will have a session attribute, which is a dictionary-like object.

You can read it and write to request.session at any point in your view. You can edit it multiple
times.

class backends.base.SessionBase

This is the base class for all session objects. It has the following standard dictionary methods:
__getitem___(key)

Example: fav_color = request.session['fav_color’]

__setitem__ (key, value)
Example: request.session[fav_color'] = 'blue’

__delitem___(key)T

Example: del request.session['fav_color']. This raises KeyError if the given key isn’t already in

the session.

e d U [Jﬂgﬁj

Using sessions in views (Continued)

° contains__ (key)
Example: 'fav_color' in request.session

e get(key, default=None)
Example: fav_color = request.session.get(‘fav_color', 'red’)

e pop(key, default=__not_given)
Example: fav_color = request.session.pop(‘fav_color’, 'blue’)

* keys()

« items()

« setdefault()
« clear()

edunet

Using sessions in views (Continued)
It also has these methods:
flush()

Deletes the current session data from the session and deletes the session cookie. This is used if
you want to ensure that the previous session data can’t be accessed again from the user’s
browser (for example, the django.contrib.auth.logout() function calls it).

set_test_cookie()

Sets a test cookie to determine whether the user’s browser supports cookies. Due to the way
cookies work, you won’t be able to test this until the user’s next page request.

test_cookie worked()

Returns either True or False, depending on whether the user’s browser accepted the test cookie.

Due to the way cookies work, you'll have to call set_test cookie() on a previous, separate page
request.

edunet

foundation

Using sessions in views (Continued)

delete test cookie()

Deletes the test cookie. Use this to clean up after yourself.

get_session_cookie_age()

Returns the value of the setting SESSION_COOKIE_AGE. This can be overridden in a custom
session backend.

set_expiry(value)
Sets the expiration time for the session. You can pass a number of different values:

« If value is an integer, the session will expire after that many seconds of inactivity. For example, calling
request.session.set_expiry(300) would make the session expire in 5 minutes.

« If value is a datetime or timedelta object, the session will expire at that specific date/time. Note that datetime and timedelta
values are only serializable if you are using the PickleSerializer.

« Ifvalue is 0, the user’s session cookie will expire when the user’s web browser is closed.
« If value is None, the session reverts to using the global session expiry policy.

* Reading a session is not considered activity for expiration purposes. Session expiration is computed from the last time the
session was modified.

edunet
Using sessions in views (Continued)

get_expiry_age()
Returns the number of seconds until this session expires. For sessions with no custom expiration (or those set
to expire at browser close), this will equal SESSION_COOKIE_AGE.

This function accepts two optional keyword arguments:
« modification: last modification of the session, as a datetime object. Defaults to the current time.

* expiry: expiry information for the session, as a datetime object, an int (in seconds), or None. Defaults to the
value stored in the session by set_expiry(), if there is one, or None.

get_expiry _date()
Returns the date this session will expire. For sessions with no custom expiration (or those set to expire at
browser close), this will equal the date SESSION _COOKIE_AGE seconds from now.

This function accepts the same keyword arguments as get_expiry_age(), and similar notes on usage apply.

edunet

Using sessions in views (Continued)

get_expire_at _browser_close()

Returns either True or False, depending on whether the user’s session cookie will expire when
the user’'s web browser is closed.

clear_expired()
Removes expired sessions from the session store. This class method is called by clearsessions.

cycle _key()

Creates a new session key while retaining the current session data. django.contrib.auth.login()
calls this method to mitigate against session fixation.

edunet

foundation

Working with JSON and AJAX

Disclaimer: The content is curated for educational purposes only.
© Edunet Foundation. All rights reserved.

edunet

Working with JSON
What is JSON

JSON (JavaScript Object Notation) is a lightweight data-interchange format. The
official Internet media type for JSON is application/json. The JSON filename

extension is .json. It is easy for humans to read and write and for machines to parse
and generate.

Django JsonResponse

JsonResponse is an HitpResponse subclass that helps to create a JSON-encoded
response. Its default Content-Type header is set to application/json. The first
parameter, data, should be a dict instance. If the safe parameter is set to False, any
object can be passed for serialization; otherwise only dict instances are allowed

edunet

foundation

JsonResponse objects

class JsonResponse(data, encoder=DjangoJSONEnNcoder, safe=True, json_dumps_params=None, **kwargs)

An HttpResponse subclass that helps to create a JSON-encoded response. It inherits most behavior from its superclass with a
couple differences:

Its default Content-Type header is set to application/json.

The first parameter, data, should be a dict instance. If the safe parameter is set to False (see below) it can be any JSON-
serializable object.

The encoder, which defaults to django.core.serializers.json.DjangoJSONEnNcoder, will be used to serialize the data. See JSON
serialization for more details about this serializer.

The safe boolean parameter defaults to True. If it's set to False, any object can be passed for serialization (otherwise only dict
instances are allowed). If safe is True and a non-dict object is passed as the first argument, a TypeError will be raised.

The json_dumps_params parameter is a dictionary of keyword arguments to pass to the json.dumps() call used to generate the
response.

e d U QHQOHT

JsonResponse objects (Continued)

Usage
Typical usage could look like:

>>> from django.http import JsonResponse
>>> response = JsonResponse({'foo": 'bar'})
>>> response.content

b'{"foo": "bar"}

Serializing non-dictionary objects

In order to serialize objects other than dict you must set the safe parameter to False:
>>> response = JsonResponse([1, 2, 3], safe=False)

Without passing safe=False, a TypeError will be raised.

JsonResponse objects (Continued)
Changing the default JSON encoder

If you need to use a different JSON encoder class you can pass the encoder
parameter to the constructor method:

>>> response = JsonResponse(data, encoder=MyJSONEncoder)

oooooooooo

edunet

foundation

Django JsonResponse example :
This example demonstrate how to send JSON data in Django

° Step 1) open command prompt and execute the following commands
> mkdir jsonresponse
> cd jsonresponse
> mkdir src
> cd src
We create the project and the and src directories. Then we locate to the src directory.

. step 2) run the command
> django-admin startproject jsonresponse .
We create a new Django project in the src directory.

Note: If the optional destination is provided, Django will use that existing directory as the project directory. If it is
omitted, Django creates a new directory based on the project name. We use the dot (.) to create a project inside the
current working directory.

We locate to the project directory.

edunet

foundation

Django JsonResponse example : (Continued)

° Step 3) open command prompt and execute the following command to show the tree structure
> tree /f
src
| manage.py
|
L jsonresponse
settings.py
urls.py
views.py
Wsgi.py

__init__.py
° Note: The Django way is to put functionality into apps, which are created with django-admin startapp. In this
tutorial, we do not use an app to make the example simpler. We focus on demonstrating how to send JSON

response

e d U QHQOHT

Django JsonResponse example :(Continued)

e Step 4) open file src/jsonresponse/urls.py and add following code

from django.contrib import admin
from django.urls import path

from .views import send_json

urlpatterns = [
path(‘admin/', admin.site.urls),
path('sendjson/', send_json, name='send_json'),

]

We add a new route page,; it calls the send_json() function from the views.py
module.

e d U QHQOT

Django JsonResponse example :(Continued)

e Step 5) create new views.py under src/jsonresponse/views.py and add following
code

from django.http import JsonResponse
def send_json(request):

data = [{'name': 'Peter’, 'email': 'peter@example.org'},

return JsonResponse(data, safe=False)

» Inside send_json(), we define a list of dictionaries. Since it is a list, we set safe to
False. If we did not set this parameter, we would get a TypeError with the following
message:

In order to allow non-dict objects to be serialized set the safe parameter to False.

aaaaaaaaaaa

Django JsonResponse example :(Continued)

e Step 6) open command prompt and run the command
> python manage.py runserver

« Step 7) We run the server and navigate to http://127.0.0.1:8000/sendjson/

» Step 8) We use the curl tool to make the GET request .open command prompt and
run command

> curl localhost:8000/sendjson/
It shows output as follows:

[{"name": "Peter", "email": "peter@example.org"},

{"name": "Julia", "email": "julia@example.org"}]

http://127.0.0.1:8000/sendjson/

edunet

foundation

Working with AJAX

Disclaimer: The content is curated for educational purposes only.
© Edunet Foundation. All rights reserved.

In this module, we learnt about

Web Framework, Django Introduction, Django Architecture
Django MVC, MVT (Model View Template)

Views and URL mapping, HttpRequest and HttpResponse , GET and
POST Method

Template, Render, Views, Context

Template Editing

SQL operation in django

Handling sessions, cookies and working with JSON and AJAX

edunet

edunet

foundation

Working with AJAX
What is AJAX

AJAX stands for Asynchronous JavaScript And XML, which allows web pages to
update asynchronously by exchanging data to and from the server. :

This means you can update parts of a web page without reloading the complete web Client

page.

It involves a combination of a browser built-in XMLHttpRequest object, JavaScript,

and HTML DOM.

How AJAX Works AJAX

° An event occurs on a web page, such as an initial page load, form submission, link or
button click, etc.

e An XMLHttpRequest object is created and sends the request to the server .
° The server responds to the request.

e The response is captured and then server respond back with response data.

° There are many scenarios where you may want to make GET and POST requests to loac [D]ango view J
and post data from the server asynchronously, back and forth. Additionally, this enables
web applications to be more dynamic and reduces page load time.

Image Source: https://media.geeksforgeeks.org/wp-content/uploads/ajax.jpg

https://media.geeksforgeeks.org/wp-content/uploads/ajax.jpg

edunet

foundation

Web References :

e Web framework : https://en.wikipedia.org/wiki/Web framework

e What is Django : https://en.wikipedia.org/wiki/Django_(web_framework)
e MVC : https://www.tutorialspoint.com/struts 2/basic mvc architecture.htm
e MVT: https://www.geeksforgeeks.org/django-project-mvt-structure/

e Views : https://docs.djangoproject.com/en/4.0/topics/http/views/
e https://www.geeksforgeeks.org/views-in-django-python/
e SQL : https://docs.djangoproject.com/en/4.0/topics/db/sql/

e Sessions : https://docs.djangoproject.com/en/4.0/topics/http/sessions/
AJAX : https://www.pluralsight.com/quides/work-with-ajax-Django
Django : https://www.guru99.com/django-tutorial.htmI#5

Django : https://www.javatpoint.com/django-tutorial
Request and Response objects : https://docs.djangoproject.com/en/4.0/ref/request-response/
e Get and post method : https://docs.djangoproject.com

© Edunet Foundation. All rights reserved.

https://en.wikipedia.org/wiki/Web_framework
https://en.wikipedia.org/wiki/Django_(web_framework)
https://www.tutorialspoint.com/struts_2/basic_mvc_architecture.htm
https://www.geeksforgeeks.org/django-project-mvt-structure/#:~:text=Django%20is%20based%20on%20MVT,for%20developing%20a%20web%20application.&text=View%3A%20The%20View%20is%20the,CSS%2FJavascript%20and%20Jinja%20files
https://docs.djangoproject.com/en/4.0/topics/http/views/
https://www.geeksforgeeks.org/views-in-django-python/
https://docs.djangoproject.com/en/4.0/topics/db/sql/
https://docs.djangoproject.com/en/4.0/topics/http/sessions/
https://www.pluralsight.com/guides/work-with-ajax-Django
https://www.guru99.com/django-tutorial.html#5
https://www.javatpoint.com/django-tutorial
https://docs.djangoproject.com/en/4.0/ref/request-response/
https://docs.djangoproject.com/en/4.0/topics/forms/#:~:text=GET%20and%20POST&text=Django's%20login%20form%20is%20returned,this%20to%20compose%20a%20URL

edunet

foundation

Web References :

e Django project https://docs.djangoproject.com/en/4.0/intro/tutorial01/
e https://docs.djangoproject.com/en/4.0/intro/tutorial02/

© Edunet Foundation. All rights reserved.

https://docs.djangoproject.com/en/4.0/intro/tutorial01/
https://docs.djangoproject.com/en/4.0/intro/tutorial02/

edunet

foundatior

Thank you

Disclaimer: The content is curated for educational purposes only.
© Edunet Foundation. All rights reserved.

	Slide 1
	Slide 2: Python Programming
	Slide 3: In this section, we will discuss:
	Slide 4: In this section, we will discuss:
	Slide 5
	Slide 6: Introduction to Python
	Slide 7: Introduction to Python
	Slide 8
	Slide 9: History
	Slide 10: History
	Slide 11
	Slide 12: Features
	Slide 13: Features
	Slide 14: Features
	Slide 15: Features
	Slide 16: Features
	Slide 17: Features
	Slide 18: Features
	Slide 19: Features
	Slide 20: Features
	Slide 21: Features
	Slide 22: Features
	Slide 23: Features
	Slide 24
	Slide 25
	Slide 26: Setup Successful
	Slide 27: Setting Up Path
	Slide 28: Setting Up Path
	Slide 29: Setting Up Path
	Slide 30: Setting Up Path
	Slide 31: Setting Up Path
	Slide 32: Setting Up Path
	Slide 33: Setting Up Path
	Slide 34: Setting Up Path
	Slide 35
	Slide 36: Basic Syntax Variable
	Slide 37: Basic Syntax Variable
	Slide 38: Basic Syntax Variable
	Slide 39: Basic Syntax Variable
	Slide 40: Basic Syntax Variable
	Slide 41: Basic Syntax Variable
	Slide 42: Basic Syntax Variable
	Slide 43: Basic Syntax Variable
	Slide 44: Basic Syntax Variable
	Slide 45: Basic Syntax Variable
	Slide 46: Basic Syntax Variable
	Slide 47: Basic Syntax Variable
	Slide 48: Basic Syntax Variable
	Slide 49: Basic Syntax Variable
	Slide 50: Basic Syntax Variable
	Slide 51: Basic Syntax Variable
	Slide 52: Basic Syntax Variable
	Slide 53
	Slide 54: Data Types Operator
	Slide 55: Data Types Operator
	Slide 56: Data Types Operator
	Slide 57: Data Types Operator
	Slide 58: Data Types Operator
	Slide 59: Data Types Operator
	Slide 60: Data Types Operator
	Slide 61: Data Types Operator
	Slide 62: Data Types Operator
	Slide 63
	Slide 64: Conditional Statement
	Slide 65: Conditional Statement
	Slide 66: Conditional Statement
	Slide 67: Conditional Statement
	Slide 68: Conditional Statement
	Slide 69: Conditional Statement
	Slide 70: Conditional Statement
	Slide 71: Conditional Statement
	Slide 72: Conditional Statement
	Slide 73: Conditional Statement
	Slide 74: Conditional Statement
	Slide 75: Conditional Statement
	Slide 76: Conditional Statement
	Slide 77: Conditional Statement
	Slide 78
	Slide 79: Looping
	Slide 80: Looping
	Slide 81: Looping
	Slide 82: Looping
	Slide 83: Looping
	Slide 84: Looping
	Slide 85: Looping
	Slide 86: Looping
	Slide 87: Looping
	Slide 88
	Slide 89: Control Statement
	Slide 90: Control Statement
	Slide 91: Control Statement
	Slide 92: Control Statement
	Slide 93: Control Statement
	Slide 94: Control Statement
	Slide 95: Control Statement
	Slide 96
	Slide 97: String Manipulation
	Slide 98: String Manipulation
	Slide 99: String Manipulation
	Slide 100: String Manipulation
	Slide 101: String Manipulation
	Slide 102: String Manipulation
	Slide 103: String Manipulation
	Slide 104: String Manipulation
	Slide 105: String Manipulation
	Slide 106: String Manipulation
	Slide 107: String Manipulation
	Slide 108: List
	Slide 109: List
	Slide 110: List
	Slide 111: List
	Slide 112: List
	Slide 113: List
	Slide 114: List
	Slide 115: List
	Slide 116: Tuple
	Slide 117: Tuple
	Slide 118: Tuple
	Slide 119: Tuple
	Slide 120: Tuple
	Slide 121: Tuple
	Slide 122
	Slide 123: Function & Methods
	Slide 124: Function & Methods
	Slide 125: Function & Methods
	Slide 126: Function & Methods
	Slide 127: Function & Methods
	Slide 128: Function & Methods
	Slide 129: Function & Methods
	Slide 130: Function & Methods
	Slide 131: Function & Methods
	Slide 132: Function & Methods
	Slide 133: Function & Methods
	Slide 134
	Slide 135: Dictionary
	Slide 136: Dictionary
	Slide 137: Dictionary
	Slide 138: Dictionary
	Slide 139: Dictionary
	Slide 140: Dictionary
	Slide 141: Functions
	Slide 142: Functions
	Slide 143: Functions
	Slide 144: Functions
	Slide 145: Functions
	Slide 146
	Slide 147: Modules
	Slide 148: Modules
	Slide 149: Modules
	Slide 150: Modules
	Slide 151: Modules
	Slide 152: Modules
	Slide 153: Modules
	Slide 154: Modules
	Slide 155: Modules
	Slide 156: Input and Output
	Slide 157: Input and Output
	Slide 158: Input and Output
	Slide 159: Input and Output
	Slide 160: Input and Output
	Slide 161: Input and Output
	Slide 162: Input and Output
	Slide 163: Input and Output
	Slide 164: Input and Output
	Slide 165: Input and Output
	Slide 166: Input and Output
	Slide 167: Input and Output
	Slide 168: Input and Output
	Slide 169: Input and Output
	Slide 170: Input and Output
	Slide 171: Input and Output
	Slide 172: Input and Output
	Slide 173
	Slide 174: Exception Handling
	Slide 175: Exception Handling
	Slide 176
	Slide 177: Exception Handling
	Slide 178: Exception Handling
	Slide 179: Exception Handling
	Slide 180: Exception Handling
	Slide 181: Exception Handling
	Slide 182: Exception Handling
	Slide 183: Object Oriented Programming
	Slide 184: OOPS in Python
	Slide 185: OOPS in Python
	Slide 186: OOPS in Python
	Slide 187: Class in Python
	Slide 188: Class in Python
	Slide 189: Classes vs Instances
	Slide 190: How to define a class
	Slide 191: How to define a class
	Slide 192: How to define a class
	Slide 193: Encapsulation in Python
	Slide 194: Inheritance in Python
	Slide 195: Example of Inheritance
	Slide 196: Example of Inheritance
	Slide 197: Example of Inheritance
	Slide 198: Polymorphism
	Slide 199: Self Parameter
	Slide 200: Returning Values
	Slide 201: Instances as return values
	Slide 202: Constructors
	Slide 203: Syntax for constructor declaration
	Slide 204: Constructor Types
	Slide 205: Example – Default Constructor
	Slide 206: Example – Parameterized Constructor
	Slide 207: Class variables and Instance Variables
	Slide 208: Destructors in Python
	Slide 209: Database
	Slide 210: Database
	Slide 211: Database
	Slide 212: Installing MySQL Connector/Python
	Slide 213: Installing MySQL Connector/Python
	Slide 214: Establishing a Connection With MySQL Server
	Slide 215: Establishing a Connection With MySQL Server
	Slide 216: Establishing a Connection With MySQL Server
	Slide 217: Creating a new database
	Slide 218: Creating a new database
	Slide 219: Show Database
	Slide 220: Creating Tables
	Slide 221: Creating Tables
	Slide 222: Insert Data into tables
	Slide 223: Inserting Multiple Rows
	Slide 224: Fetching Data
	Slide 225: Where Clause
	Slide 226: Update Data
	Slide 227: Delete Data from Table
	Slide 228: Drop Tables
	Slide 229: Orberby Clause
	Slide 230: Web Development in Python
	Slide 231: Django
	Slide 232: Python Flask
	Slide 233: Python Flask
	Slide 234: Installation
	Slide 235: Simple Application
	Slide 236: Run the Application
	Slide 237: Python for Web-Django
	Slide 238: In this module, student will learn about:
	Slide 239: Web Framework, Django Introduction, Django Architecture
	Slide 240: In this sub-section, we will discuss:
	Slide 241: Web Framework
	Slide 242: Introduction to Django
	Slide 243: Django Features
	Slide 244: Django Architecture
	Slide 245: Model-View-Template (MVT) Architecture (Continued)
	Slide 246
	Slide 247: Model-View-Controller (MVC) Architecture (Continued)
	Slide 248: In this section, Let us work practically. Lets get your hands dirty with code
	Slide 249: Installation of Django
	Slide 250: Installation of Django
	Slide 251: Step 1) Creating environment for Django project (Continued)
	Slide 252: Step 1) Creating environment for Django project (Continued)
	Slide 253: Step 2) Creating the first Project with django
	Slide 254: Creating the first Project with django
	Slide 255: Creating the first Project with django
	Slide 256: Creating the first Project with django
	Slide 257: Creating the first Project with django
	Slide 258: Creating the first Project with django
	Slide 259: Creating the first Project with django
	Slide 260: Creating the first Project with django
	Slide 261: Creating the first Project with django
	Slide 262: Writing your first Django app: basic poll application
	Slide 263: Writing your first Django app: basic poll application
	Slide 264: Writing your first Django app: basic poll application
	Slide 265: Writing your first Django app: basic poll application
	Slide 266: Writing your first Django app: basic poll application
	Slide 267: Writing your first Django app: basic poll application
	Slide 268: Writing your first Django app: basic poll application
	Slide 269: Writing your first Django app: basic poll application
	Slide 270: Writing your first Django app: basic poll application
	Slide 271: Writing your first Django app: basic poll application
	Slide 272: Writing your first Django app: basic poll application
	Slide 273: Writing your first Django app: basic poll application
	Slide 274: Writing your first Django app: basic poll application
	Slide 275: Writing your first Django app: basic poll application
	Slide 276: Writing your first Django app: basic poll application
	Slide 277: Writing your first Django app: basic poll application
	Slide 278: Writing your first Django app: basic poll application
	Slide 279: Database
	Slide 280: Writing your first Django app: Part 2
	Slide 281: Writing your first Django app: Part 2
	Slide 282: Writing your first Django app: Part 2
	Slide 283: Writing your first Django app: Part 2
	Slide 284: Writing your first Django app: Part 2
	Slide 285: Writing your first Django app: Part 2
	Slide 286: Writing your first Django app: Part 2
	Slide 287: Writing your first Django app: Part 2
	Slide 288: Writing your first Django app: Part 2
	Slide 289: Writing your first Django app: Part 2
	Slide 290: Writing your first Django app: Part 2
	Slide 291: Writing your first Django app: Part 2
	Slide 292: Writing your first Django app: Part 2
	Slide 293: Writing your first Django app: Part 2
	Slide 294: Writing your first Django app: Part 2
	Slide 295: Writing your first Django app: Part 2
	Slide 296: Writing your first Django app: Part 2
	Slide 297: Writing your first Django app: Part 2
	Slide 298: Writing your first Django app: Part 2
	Slide 299: Writing your first Django app: Part 2
	Slide 300: Writing your first Django app: Part 2
	Slide 301: Writing your first Django app: Part 2
	Slide 302: Writing your first Django app: Part 2
	Slide 303: Writing your first Django app: Part 2
	Slide 304: Writing your first Django app: Part 2
	Slide 305: Writing your first Django app: Part 2
	Slide 306: Writing your first Django app: Part 2
	Slide 307: Writing your first Django app: Part 2
	Slide 308: Writing your first Django app: Part 2
	Slide 309: Django Admin
	Slide 310: Introducing the Django Admin
	Slide 311: Introducing the Django Admin
	Slide 312: Introducing the Django Admin
	Slide 313: Introducing the Django Admin
	Slide 314: Introducing the Django Admin
	Slide 315: Introducing the Django Admin
	Slide 316: Introducing the Django Admin
	Slide 317: Introducing the Django Admin
	Slide 318: Introducing the Django Admin
	Slide 319: Introducing the Django Admin
	Slide 320: Views and URL mapping, HttpRequest & HttpResponse, GET & POST Method
	Slide 321: Views
	Slide 322: Creating simple View : Example
	Slide 323: Creating simple View: Example Explanation
	Slide 324: URL Mapping : Example
	Slide 325: Output for DateTime example
	Slide 326: HttpRequest & HttpResponse,
	Slide 327: HttpRequest & HttpResponse
	Slide 328: HttpRequest
	Slide 329: HttpRequest
	Slide 330: HttpRequest
	Slide 331: HttpRequest
	Slide 332: HttpRequest
	Slide 333: HttpRequest
	Slide 334: HttpRequest
	Slide 335: HttpRequest
	Slide 336: HttpRequest
	Slide 337: HttpRequest
	Slide 338: HttpRequest
	Slide 339: HttpRequest
	Slide 340: HttpRequest
	Slide 341: HttpRequest
	Slide 342: HttpRequest
	Slide 343: HttpRequest
	Slide 344: HttpRequest
	Slide 345: HttpResponse
	Slide 346: HttpResponse
	Slide 347: HttpResponse
	Slide 348: HttpResponse
	Slide 349: HttpResponse
	Slide 350: HttpResponse
	Slide 351: HttpResponse
	Slide 352: HttpResponse
	Slide 353: HttpResponse
	Slide 354: HttpResponse
	Slide 355: HttpResponse
	Slide 356: HttpResponse
	Slide 357: HttpResponse
	Slide 358: HttpResponse
	Slide 359: HttpResponse
	Slide 360: HttpResponse
	Slide 361: HttpResponse
	Slide 362: HttpResponse
	Slide 363: GET & POST Method
	Slide 364: Get and Post Method
	Slide 365: Get and Post Method
	Slide 366: Get and Post Method
	Slide 367: Get and Post Method
	Slide 368: Get and Post Method
	Slide 369: Get and Post Method
	Slide 370: Get and Post Method
	Slide 371: Get and Post Method
	Slide 372: Get and Post Method
	Slide 373: Get and Post Method
	Slide 374: Get and Post Method
	Slide 375: Get and Post Method
	Slide 376: Get and Post Method
	Slide 377: Get and Post Method
	Slide 378: Get and Post Method
	Slide 379: Get and Post Method
	Slide 380: Get and Post Method
	Slide 381: Template, Render, Views, Context Template Editing
	Slide 382: Templates
	Slide 383: The Django template language
	Slide 384: Let us discuss main characteristics one by one
	Slide 385: Let us discuss main characteristics one by one (Continued)
	Slide 386: Let us discuss main characteristics one by one (Continued)
	Slide 387: Let us discuss main characteristics one by one (Continued)
	Slide 388: Let us discuss main characteristics one by one (Continued)
	Slide 389: Let us discuss main characteristics one by one (Continued)
	Slide 390: Example on Django Template : Let us create one template and render it .
	Slide 391: Example on Django Template : Let us create one template and render it .
	Slide 392: Example on Django Template : Let us create one template and render it .
	Slide 393: Example on Django Template : Let us create one template and render it .
	Slide 394: Example on Django Template : Let us create one template and render it .
	Slide 395: SQL operations in Django Django Models
	Slide 396: Django Models
	Slide 397: Django Models
	Slide 398: Quick Example : Creating Models
	Slide 399: Using Models
	Slide 400: Fields : -creating model Fields
	Slide 401: Fields types : -creating model Fields
	Slide 402: Fields options : -creating model Fields
	Slide 403: SQL operations in Django
	Slide 404: Making queries :create model
	Slide 405: Making queries : Creating objects
	Slide 406: Making queries : Saving changes to objects
	Slide 407: Making queries : Retrieving objects
	Slide 408: Making queries : Retrieving specific objects with filters
	Slide 409: Making queries :Retrieving a single object with get()
	Slide 410: Making queries : Limiting QuerySets
	Slide 411: Performing raw SQL queries
	Slide 412: Performing raw SQL queries (Continued)
	Slide 413: Django CRUD (Create, Retrieve, Update, Delete) Function Based Views
	Slide 414: Django CRUD operations
	Slide 415: Handling sessions, cookies and Working with JSON and AJAX
	Slide 416: Handling sessions
	Slide 417: What is session and How to use sessions:
	Slide 418: Configuring the session engine
	Slide 419: Using file-based sessions
	Slide 420: Using sessions in views
	Slide 421: Using sessions in views (Continued)
	Slide 422: Using sessions in views (Continued)
	Slide 423: Using sessions in views (Continued)
	Slide 424: Using sessions in views (Continued)
	Slide 425: Using sessions in views (Continued)
	Slide 426: Working with JSON and AJAX
	Slide 427: Working with JSON
	Slide 428: JsonResponse objects
	Slide 429: JsonResponse objects (Continued)
	Slide 430: JsonResponse objects (Continued)
	Slide 431: Django JsonResponse example :
	Slide 432: Django JsonResponse example : (Continued)
	Slide 433: Django JsonResponse example :(Continued)
	Slide 434: Django JsonResponse example :(Continued)
	Slide 435: Django JsonResponse example :(Continued)
	Slide 436: Working with AJAX
	Slide 437: In this module, we learnt about
	Slide 438: Working with AJAX
	Slide 439: Web References :
	Slide 440: Web References :
	Slide 441: Thank you

