
(60 hours)

Core Module-4

Python Programming
(60 hours)

In this section, we will discuss:

● Introduction to Python.

● History.

● Features

● Setting Up Path

● Basic Syntax Variable

● Data Types Operator

● Conditional Statement

● Looping

● Control Statement

In this section, we will discuss:

● String Manipulation

● Lists

● Tuple

● Functions and Methods

● Dictionaries

● Functions

● Modules

● Input and Output

● Exception Handling

● Object Oriented Programming

Introduction to Python

Image source: https://images.app.goo.gl/hHjqBxYkqezSBY41A

https://images.app.goo.gl/hHjqBxYkqezSBY41A

Introduction to Python

Characteristics of Python

● Simple Syntax

● GUI Programming.

● Scalable

● Free and Open Source

● Variety of Usage and Application.

● Interpreted and Interactive

● Object Oriented

Image source: https://images.app.goo.gl/hHjqBxYkqezSBY41A

https://images.app.goo.gl/hHjqBxYkqezSBY41A

Introduction to Python

Advantages over other languages

● Simple code

● It is easy to understand

● It is Free

● It Needs Less Coding

● All Kinds of Businesses Can Afford it

● It is one of the most Trending Language.

Image Source: https://images.app.goo.gl/2K2vApdtZx7vBbVn7

https://images.app.goo.gl/2K2vApdtZx7vBbVn7

History

Image Source : https://images.app.goo.gl/VtzTMjduwUVfx1r57

https://images.app.goo.gl/VtzTMjduwUVfx1r57

History

Python Timeline/History and

IEEE rankings

● Python was conceptualized by Guido Van

Rossum in the late 1980s.

● Rossum Published the first version of Python

code(0.9.0) in February 1991 at CWI(Centrum

Wiskunde & Informatica) in Netherland,

Amsterdam.

● Python is Derived from ABC Programming

Language that had been developed at the

CWI.

Image Source : https://images.app.goo.gl/VtzTMjduwUVfx1r57

https://images.app.goo.gl/VtzTMjduwUVfx1r57

History

Python Timeline/History and

IEEE rankings (Contd..)

● Rossum choose the name “Python” ,

since he was a big fan of Monty Python’s

Flying Circus.

● Python is now maintained by a core

development team at the institute,

although Rossum still holds a vital role in

directing its progress.

Image Source: https://images.app.goo.gl/61fVvm834STCtJW89

Image Source: https://images.app.goo.gl/61fVvm834STCtJW89

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/61fVvm834STCtJW89

Features

Image source :

https://cdn.programiz.com/sites/tutorial2program/files/python-idle.JPG

https://cdn.programiz.com/sites/tutorial2program/files/python-idle.JPG

©

Features

Easy to Code and Understand

● Python has simpler syntax when

compared to C, C++, Java and other

programming languages.

● This enables any newbie to quickly pick

up the basics of Python.

● Also, despite being a high-level language,

Python code looks very short much

readable due to its English like

commands. In short, it is a developer-

friendly language.
Image source :

https://cdn.programiz.com/sites/tutorial2program/files/python-idle.JPG

https://cdn.programiz.com/sites/tutorial2program/files/python-idle.JPG

Features

Expressive Language

● Python is very expressive when compared

to other languages.

● By expressive, we mean, in Python a

single line of code performs a lot more

than what multiple lines can perform in

other languages.

● In simple it means that fewer lines of code

are required to write a program in Python.

Image Source: https://images.app.goo.gl/Ftdt9TC6dtaVkXHg6

Image Source: https://images.app.goo.gl/Ftdt9TC6dtaVkXHg6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/Ftdt9TC6dtaVkXHg6

Features

Object Oriented

● Python is a multi-paradigm

programming language. Meaning, it

supports different programming

approach.

● One of the popular approach to solve

a programming problem is by

creating objects.

● This is known as Object-Oriented

● Programming (OOP).
Image Source: https://images.app.goo.gl/iP8uaejcdLcDbJCH6

Image Source: https://images.app.goo.gl/iP8uaejcdLcDbJCH6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/iP8uaejcdLcDbJCH6

Features

Object Oriented (Contd..)

● Python is an “object-oriented

programming language.”

● This means that almost all the

code is implemented using a

special construct called

classes.

Image Source: https://images.app.goo.gl/iP8uaejcdLcDbJCH6

Image Source: https://images.app.goo.gl/iP8uaejcdLcDbJCH6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/iP8uaejcdLcDbJCH6

Features

Extensible Language

● In case you want to write a part

of your Python code in C++ or

Java etc, then you can do it.

● Since Python is an extensible

language, it lets you do this with

ease.

Image Source: https://techvidvan.com/tutorials/features-of-python/

Image Source: https://techvidvan.com/tutorials/features-of-python/

https://images.app.goo.gl/61fVvm834STCtJW89
https://techvidvan.com/tutorials/features-of-python/

Features

Dynamically typed Programming

Language

● Python is a dynamically typed

language.

● This means, whenever a variable is

declared, the programmer need not

mention its data type.

● Rather, the type of the variable is

decided during run time.

Image Source: https://techvidvan.com/tutorials/features-of-python/

Image Source: https://techvidvan.com/tutorials/features-of-python/

https://images.app.goo.gl/61fVvm834STCtJW89
https://techvidvan.com/tutorials/features-of-python/

Features

Use of Interpreter

● Python installation interprets and

executes the code line by line at

a time.

● Python interpreter offers some

pretty cool features:

● Interactive editing

● History substitution

● Code completion on systems

with support for readline
Image Source: https://images.app.goo.gl/zFfSFFXMyPCLGPZcA

Image Source: https://images.app.goo.gl/zFfSFFXMyPCLGPZcA

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/zFfSFFXMyPCLGPZcA

Features

Free & Open Source

● Python language is freely available

● i.e without any cost.

● It is open and available to anyone.

● Anyone can freely distribute it,read the

source code and edit it.

● Pythons license is administered by the

Python Software Foundation.

Image Source: https://images.app.goo.gl/WLD1cUM2GXMk9E5Z6

Image Source: https://images.app.goo.gl/WLD1cUM2GXMk9E5Z6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/WLD1cUM2GXMk9E5Z6

Features

Cross Platform Language

● Python can run equally well on

variety of platform-

● Windows

● Linux/Unix

● Macintosh

● Smart Phones etc

● We can also say that Python is a

portable language. Image Source: https://images.app.goo.gl/WLD1cUM2GXMk9E5Z6

Image Source: https://images.app.goo.gl/WLD1cUM2GXMk9E5Z6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/WLD1cUM2GXMk9E5Z6

Features

Large Standard Library

● Python has a large standard library and

this helps save the programmers time

as you don't have to write your own

code for every single logic.

● There are libraries for expressions, unit-

testing, web browsers, databases, CGI,

image manipulation etc.

Image Source: https://docs.python.org/3/library/index.html

Image Source: https://docs.python.org/3/library/index.html

https://images.app.goo.gl/61fVvm834STCtJW89
https://docs.python.org/3/library/index.html

Features

Large Standard Library

(Contd..)

● Python provide rich set of module

and functions for rapid application

development

● Python’s bulk of the library is very

portable and cross-platform

compatible on UNIX, Windows and

Macintosh.

Image Source: https://docs.python.org/3/library/index.html

Image Source: https://docs.python.org/3/library/index.html

https://images.app.goo.gl/61fVvm834STCtJW89
https://docs.python.org/3/library/index.html

Features

Elegant Syntax

● Python Elegant Syntax means it is more

capable to expressing the code’s purpose

than many other languages.

● Python can easily test even small portion of

code.

● Python’s elegant syntax and

dynamic typing, together with its

interpreted nature, make it an ideal

language for scripting and rapid

application development in many areas on

most platforms.
Image Source: https://images.app.goo.gl/ZPuTEDwaKeEAcv8h6

Image Source: https://images.app.goo.gl/ZPuTEDwaKeEAcv8h6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/ZPuTEDwaKeEAcv8h6

Setting Up Path

Installation of Python IDLE

● List of Hardware/Software

Requirements:

● Laptop/Computer with

Windows/Linux OS-Ubuntu 18.04LTS

● Python Software

● Installation Steps:

● Install Python software in the system.

● Open the browser and type the

python.org/downloads.

Image Source: https://www.geeksforgeeks.org/how-to-install-python-on-windows/

Image Source: https://www.geeksforgeeks.org/how-to-install-

python-on-windows/

https://images.app.goo.gl/61fVvm834STCtJW89
https://www.geeksforgeeks.org/how-to-install-python-on-windows/
https://www.geeksforgeeks.org/how-to-install-python-on-windows/

Installation of Python in

Windows(Contd..)

● Choice either Windows x86-64

executable installer for 64-bit or

Windows x86 executable installer for

32-bit.

● After downloading a file this page will

appear.

● Install the software

● Select Add Python 3.10 to Path

Setting Up Path

Image Source: https://www.geeksforgeeks.org/how-to-install-python-on-windows/

Image Source: https://www.geeksforgeeks.org/how-to-install-

python-on-windows/

https://images.app.goo.gl/61fVvm834STCtJW89
https://www.geeksforgeeks.org/how-to-install-python-on-windows/
https://www.geeksforgeeks.org/how-to-install-python-on-windows/

Setup Successful

Image Source: https://www.geeksforgeeks.org/how-to-install-python-on-windows/

Image Source: https://www.geeksforgeeks.org/how-to-install-

python-on-windows/

https://images.app.goo.gl/61fVvm834STCtJW89
https://www.geeksforgeeks.org/how-to-install-python-on-windows/
https://www.geeksforgeeks.org/how-to-install-python-on-windows/

Setting Up Path

How to set Python Path in Windows

● To permanently modify the default

● environment variables :

● My Computer > Properties >

Advanced System Settings >

Environment Variables > Edit

Image Source: https://net-informations.com/python/intro/path.htm#google_vignette

Image Source: https://net-

informations.com/python/intro/path.htm#google_vignette

https://images.app.goo.gl/61fVvm834STCtJW89
https://net-informations.com/python/intro/path.htm
https://net-informations.com/python/intro/path.htm

Setting Up Path

How to set Python Path in

Windows(Contd..)

● Right-click 'My Computer'.

● Select 'Properties' at the bottom of the

Context Menu.

● Select 'Advanced system settings'

● Click 'Environment Variables...' in the

Advanced Tab

● Under 'System Variables': Click Edit

● Add python path to the end of the list (the

paths are separated by semicolons(;))
Image Source: https://net-informations.com/python/intro/path.htm#google_vignette

Image Source: https://net-

informations.com/python/intro/path.htm#google_vignette

https://images.app.goo.gl/61fVvm834STCtJW89
https://net-informations.com/python/intro/path.htm
https://net-informations.com/python/intro/path.htm

Setting Up Path

Installation of Python in Linux

● Linux is an open source Operating System.

There are many Linux based operating

systems. Popular are Ubuntu, Fedora,

Linux Mint, Debian.

● Open the terminal or Command prompt

from your linux based OS. Type the

following commands.

● If you are using Ubuntu 16.0 or newer

version, then you can easily install Python

3.6 or Python 2.7 by typing the following

commands
Image Source: https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

Image Source: https://phoenixnap.com/kb/how-to-install-python-3-

ubuntu

https://images.app.goo.gl/61fVvm834STCtJW89
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

Setting Up Path

Installation of Python in Linux

(Contd..)

● $ sudo apt-get update

● $ sudo apt-get install python3

or

● $ sudo apt-get update

● $ sudo apt-get install python2.7

Image Source: https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

Image Source: https://phoenixnap.com/kb/how-to-install-python-3-

ubuntu

https://images.app.goo.gl/61fVvm834STCtJW89
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

Setting Up Path

Installation of Python in Linux

(Contd..)

● You can check it is installed or not

by

● Type the following commands

in terminal.

● For Python3:-

● $ python3 --version

● For Python2:-

● $ python2 --version
Image Source: https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

Image Source: https://phoenixnap.com/kb/how-to-install-python-3-

ubuntu

https://images.app.goo.gl/61fVvm834STCtJW89
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

Setting Up Path

● The steps for adding Path in Linux

are fairly straight forward, just

follow the steps outlined below.

● In the csh shell, type the following

sentence:

● PATH

“$PATH:/usr/local/bin/python” and

press Enter.

How to Set Python Path in Linux

Image Source: https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

Image Source: https://phoenixnap.com/kb/how-to-install-python-3-

ubuntu

https://images.app.goo.gl/61fVvm834STCtJW89
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

Setting Up Path

● export

PATH=”$PATH:/usr/local/bin/python”

and press Enter.

● If you have access to either sh or

ksh shell, then open up the terminal

and type the following,

● PATH=”$PATH:/usr/local/bin/python”

and press Enter.

open up the bash shell and type
the following phrase

Image Source: https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

Image Source: https://phoenixnap.com/kb/how-to-install-python-3-

ubuntu

https://images.app.goo.gl/61fVvm834STCtJW89
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

Setting Up Path

How to Set Python Path in
Linux (Contd..)

● One of the most important things

to note

● when you are adding Path to

Python in Unix or Linux is that,

● /usr/local/bin/python is the default

path of the Python directory.

Image Source: https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

Image Source: https://phoenixnap.com/kb/how-to-install-python-3-

ubuntu

https://images.app.goo.gl/61fVvm834STCtJW89
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu
https://phoenixnap.com/kb/how-to-install-python-3-ubuntu

Basic Syntax Variable

Image Source: https://images.app.goo.gl/pLedhKeCYfNXcyLy7

Image Source: https://images.app.goo.gl/pLedhKeCYfNXcyLy7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/pLedhKeCYfNXcyLy7

Basic Syntax Variable

Variables

● A variable is a container for a

value.

● It can be assigned a name, you

can use it to refer to it later in the

program.

● Based on the value assigned, the

interpreter decides its data type.

Image Source: https://images.app.goo.gl/pLedhKeCYfNXcyLy7

Image Source: https://images.app.goo.gl/pLedhKeCYfNXcyLy7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/pLedhKeCYfNXcyLy7

Basic Syntax Variable

● In Python, the code executes via the

Python Shell, which comes with

Python Installation.

● To access the Python shell, open the

terminal of your operating system and

then type "python". Press the enter

key and the Python shell will appear.

Interactive Mode Programming

Basic Syntax Variable

Interactive Mode Programming
(Contd..)

>>>

● The indicates that the Python shell is

ready to execute and send your

commands to the Python interpreter.

● The result is immediately displayed on

the Python shell as soon as the Python

interpreter interprets the command.

Basic Syntax Variable

● Script mode is used to work with lengthy

codes.

● In Script mode, You write your code in a

text file then save it with a .py extension.

● you can run your code by clicking”Run”

then “Run module” or simply press F5.

● You can use any text editor to wite the code

like- Sublime, Atom, Notepad++, etc.

Script Mode Programming

Basic Syntax Variable

Python Identifiers

● A Python identifier is a name used to find a

variable, function, class, module or other

object.

● An identifier begin with a letter A to Z or a

to z or an underscore(_) followed by zero

or more letters and digits (0 to 9).

● Python doesn’t permit punctuation

character such as @, $ and % within

identifiers.

● Python is a case sensitive Programming

Language.
Image Source: https://www.google.com/Python-Identifiers.jpg

Image Source: https://www.google.com/Python-Identifiers.jpg

https://images.app.goo.gl/61fVvm834STCtJW89
https://www.google.com/imgres?imgurl=https://coding.booksinhindi.com/wp-content/uploads/2020/02/Python-Identifiers.jpg&tbnid=BXaMsPlhf_sOXM&vet=1&imgrefurl=https://coding.booksinhindi.com/python-identifiers/&docid=m7-30mT-caY4NM&w=550&h=400&source=sh/x/im/m1/1&kgs=1eef25b30e1e8e7c&shem=abme,trie

Basic Syntax Variable

● There are reserved words and

cannot use them as constant or

variable or any other identifier

names.

● All the Python keywords contain

lowercase letters only.

Reserved Keywords

Image Source: https://images.app.goo.gl/Tz4Vm1dpgUkWGpWn9

Image Source: https://images.app.goo.gl/Tz4Vm1dpgUkWGpWn9

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/Tz4Vm1dpgUkWGpWn9

Basic Syntax Variable

● Python provides no braces to

indicate blocks or code for class

and function definitions or flow

control.

● Blocks of code are denoted by

line indentation, which is rigidly

enforced.

● The number of spaces in the

indentation is variable, but all

statement within the block must

be indented the same amount.

Lines and Indentation

Image Source: https://images.app.goo.gl/rBAU8eBd2GsUXYtZ9

Image Source: https://images.app.goo.gl/rBAU8eBd2GsUXYtZ9

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/rBAU8eBd2GsUXYtZ9

Basic Syntax Variable

Multi Line Statement

● Python is to be able to easily

print across multiple lines.

● Statements contained within the

[],{} or () brackets do not need

to use the line continuation

character.

Image Source: https://www.slideshare.net/slideshow/fundamentals-of-python-language/124292692

Image Source: https://www.slideshare.net/slideshow/fundamentals-of-

python-language/124292692

https://images.app.goo.gl/61fVvm834STCtJW89
https://www.slideshare.net/slideshow/fundamentals-of-python-language/124292692
https://www.slideshare.net/slideshow/fundamentals-of-python-language/124292692

Basic Syntax Variable

Quotation in Python

● Python accepts single (‘), double (“),

and triple (''' or " "") quotes to denote

string literals, as long as the same

type of quote starts and ends the

strings.

● The triple quotes are used to span

the string across multiple lines.

Image Source: https://images.app.goo.gl/PFnJJHof1xDqqssV6

Image Source: https://images.app.goo.gl/PFnJJHof1xDqqssV6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/PFnJJHof1xDqqssV6

Basic Syntax Variable

Quotation in Python (Contd..)

● For example, all the followings

are legal-

● word = ’word’

● sentence = “This is a

sentence”

● Paragraph = “””This is a

paragraph. It is made up of

multiple lines and

sentences.”””

Image Source: https://images.app.goo.gl/PFnJJHof1xDqqssV6

Image Source: https://images.app.goo.gl/PFnJJHof1xDqqssV6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/PFnJJHof1xDqqssV6

Basic Syntax Variable

Comments in Python

● A hash sign (#) that is not inside

a string literal begins a comment.

● All characters after the # and up

to the end of the physical line are

part of the comment and the

Python interpreter ignores them.

Image Source: https://images.app.goo.gl/AgSoNnFVLUZArQFs5

Image Source: https://images.app.goo.gl/AgSoNnFVLUZArQFs5

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/AgSoNnFVLUZArQFs5

Basic Syntax Variable

Using Blank Lines

● A line containing only

whitespaces, possibly with a

comment, is known as a blank

line and Python totally ignores it.

● In an interactive interpreter

session, you must enter physical

line to terminate a multiple

statement.

Basic Syntax Variable

Input from the User

● Builtin function - input()

Basic Syntax Variable

Input from the User (Contd..)

● even when the user inputs an

integer value, it will still be

considered as a string.

● input()-input() interprets and

evaluates the input entered by

the user, which means if the

user enters an integer, an

integer will be returned and if

the user enters a string, a

string will be returned.

Image Source: https://images.app.goo.gl/UjRhrkMQH1wHB6XS8

Image Source: https://images.app.goo.gl/UjRhrkMQH1wHB6XS8

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/UjRhrkMQH1wHB6XS8

Basic Syntax Variable

Waiting for the User

● The following line of the program

displays the prompt, the statement

saying “Press the Enter key to Exit”.

● Wait for the user to take action-

● raw_input(“/n/n Press the Enter key to

Exit.”).

● Here, /n/n is used to create two new

lines before displaying the actual line.

Basic Syntax Variable

Multiple Statement on a Single Line

● The Semicolon (;) allows multiple

statements on the Single Line

given that neither statement starts

a new code block.

● Here is a simple snip using the

semicolon-

● Import

sys;x=”foo”sys.stdout.write(x+’\n’)

Basic Syntax Variable

● A group of individual statements,

which make a single code block are

called Suites in Python.

● Compound or complex statements,

such as if, while, def, and class

require a header line and a suite.

● Header lines begin the statement

(with the keyword) and terminate

with a colon (:) and are followed

by one or more lines which make

up the suite.

Multiple Statement Groups as Suites

Data Types Operator

Image Source: https://images.app.goo.gl/Lseqbjus8o1mXGJy8

Image Source: https://images.app.goo.gl/Lseqbjus8o1mXGJy8

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/Lseqbjus8o1mXGJy8

Data Types Operator

Types of Operator

● Python Arithmetic Operator

● Python Comparison Operator

● Python Assignment Operator

● Python Bitwise Operator

● Python Logical Operator

● Python Membership Operator

● Python Identity Operator

● Python Operator Precedence
Image Source: https://images.app.goo.gl/Lseqbjus8o1mXGJy8

Image Source: https://images.app.goo.gl/Lseqbjus8o1mXGJy8

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/Lseqbjus8o1mXGJy8

Data Types Operator

Python Arithmetic Operator

● Arithmetic Operators are used

to perform mathematical

operations like addition,

subtraction, multiplication etc.

Image Source: https://images.app.goo.gl/D8YpxfkyZ1aHSaYq5

Image Source: https://images.app.goo.gl/D8YpxfkyZ1aHSaYq5

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/D8YpxfkyZ1aHSaYq5

Data Types Operator

Python Comparison Operator

● Comparison Operators are used

to compare values.

● It either returns True or False

according to the condition

Image Source: https://images.app.goo.gl/P3ceUaPYPVn6WhUdA

Image Source: https://images.app.goo.gl/P3ceUaPYPVn6WhUdA

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/P3ceUaPYPVn6WhUdA

Data Types Operator

Python Assignment Operator

● Assignment Operator are used

to Python to assign values to

variable.

● Equals (=) operator is the most

commonly used assignment

operator in Python.

Image Source: https://images.app.goo.gl/mMu7mwghd7G5Wkwg7

Image Source: https://images.app.goo.gl/mMu7mwghd7G5Wkwg7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/mMu7mwghd7G5Wkwg7

Data Types Operator

Python Bitwise Operator

● Bitwise Operators act an Operand

as if they were string of binary

digits. It operates bit by bit hence,

the name.

● For eg- 2 is 10 in binary and 7 is

111.

● Now In this table

● Let x=10 (0000 1010 in binary)

and y=4 (0000

● 0100 in binary)
Image Source: https://images.app.goo.gl/pMuXXSQoJ7E9wCTk6

Image Source: https://images.app.goo.gl/pMuXXSQoJ7E9wCTk6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/pMuXXSQoJ7E9wCTk6

Data Types Operator

Python Logical Operator

● There are three types of Python

Logical Operator-

And Operator

Or Operator

Not Operator

Image Source: https://images.app.goo.gl/Mw1wjPASLrZ8SBgYA

Image Source: https://images.app.goo.gl/Mw1wjPASLrZ8SBgYA

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/Mw1wjPASLrZ8SBgYA

Data Types Operator

Python Membership Operator

● in and not in are the membership

operators in Python.

● They are used to test whether a

value or variable is found in a

sequence (string, list, tuple, set

and dictionary).
Image Source: https://images.app.goo.gl/3NA6GpPmD5b9ZRbb7

Image Source: https://images.app.goo.gl/3NA6GpPmD5b9ZRbb7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/3NA6GpPmD5b9ZRbb7

Data Types Operator

Python Identity Operator

● is and is not are the identity

operators in Python.

● They are used to check if two

values (or variables) are located

on the same part of the memory.

● Two variables that are equal

does not imply that they are

identical.
Image Source: https://images.app.goo.gl/Yj7kCuftbUTZo4aX6

Image Source: https://images.app.goo.gl/Yj7kCuftbUTZo4aX6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/Yj7kCuftbUTZo4aX6

Data Types Operator

Python Operators Precedence

● From the highest Precedence

to the

● lowest down the table.

● Operators on the same row

have the same Precedence.

Image Source: https://images.app.goo.gl/7CS1HQToMXXx6Tet8

Image Source: https://images.app.goo.gl/7CS1HQToMXXx6Tet8

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/7CS1HQToMXXx6Tet8

Conditional Statement

Conditional Statement

● The basic Decision statements in

Computer is Selection Structure.

● The Decision is described to computer as a

conditional statement that can be

answered True or False.

● Python language provide the following

conditional (Decision Making) statements.

If Statement

If...else Statement

If...elif...else Statement

Nested if...else Statement

Statement And Description (Contd..)

Conditional Statement

● If statement-

The If statement is decision making

statement.

It is used to control the flow of the statement

and also used to test logically whether the

condition is true or false.

● Syntax –

if test expression:

Statement And Description (Contd..)

Image Source: https://images.app.goo.gl/6Wn2Zck8wQYJAfDG9

Image Source: https://images.app.goo.gl/6Wn2Zck8wQYJAfDG9

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/6Wn2Zck8wQYJAfDG9

Conditional Statement

Statement And Description(Contd..)

● Example Program:

i=int(input("Enter the Number : "))

if(i<10):

print("Condition is True")

Conditional Statement

Statement And Description (Contd..)

● If..else statement-

The if..else statement is called

alternative execution, in which there

are two possibilities and the condition

determines which one get executed.

Image Source: https://images.app.goo.gl/qQHZX3JDoYjmG6sE6

Image Source: https://images.app.goo.gl/qQHZX3JDoYjmG6sE6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/qQHZX3JDoYjmG6sE6

Conditional Statement

● Syntax-

if test expression:

body of if

else:

body of else

Statement And Description (Contd..)

Image Source: https://images.app.goo.gl/Yj7kCuftbUTZo4aX6

Image Source: https://images.app.goo.gl/Yj7kCuftbUTZo4aX6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/Yj7kCuftbUTZo4aX6

Conditional Statement

num=int(input("Enter the Number : "))

if(num%2)==0:

print("Given number is Even")

else:

print("Given number is Odd")

Conditional Statement

● Elif Statement-

Elif is a keyword used in python in

replacement of else if to place another

condition in the program.

This is called chained conditional.

Chained conditions allows than two

possibilities and need more than two

branches.

Statement And Description (Contd..)

Image Source: https://images.app.goo.gl/einqW78QMyGTifcT8

Image Source: https://images.app.goo.gl/einqW78QMyGTifcT8

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/einqW78QMyGTifcT8

Conditional Statement

if expression:

body of if

elif expression:

body of elif

else:

body of else

Statement And Description (Contd..)

Image Source: https://images.app.goo.gl/einqW78QMyGTifcT8

Image Source: https://images.app.goo.gl/einqW78QMyGTifcT8

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/einqW78QMyGTifcT8

Conditional Statement

Conditional Statement

Statement And Description (Contd..)

Conditional Statement

Statement And Description (Contd..)

● Nested if...else statement-

We can write an entire if..else statement in

another if..else statement called nesting,

and the statement is called nested if.

In a nested if construct, you can have an

if..elif..else construct inside an if..elif..Else

construct.

Image Source: https://images.app.goo.gl/yeUcQAudRfaBz9XC9

Image Source: https://images.app.goo.gl/yeUcQAudRfaBz9XC9

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/yeUcQAudRfaBz9XC9

Conditional Statement

If expression1:

statement(s)

If expression2:

statement(s)

Elif expression3:

statement(s)

Else:

statement(s)

Statement And Description (Contd..)

Image Source: https://images.app.goo.gl/yeUcQAudRfaBz9XC9

Image Source: https://images.app.goo.gl/yeUcQAudRfaBz9XC9

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/yeUcQAudRfaBz9XC9

Conditional Statement

● Example Program-

num = -99

if num > 0:

print("Positive Number")

else:

print("Negative Number")

#nested if

if -99<=num:

print("Two digit Negative Number")

Statement And Description (Contd..)

Conditional Statement

Single Statement Suites

● If the suite of an if clause

consists only of a single line, it

may go on the same line as the

header statement.

● Here is an example of a one-

line if clause −

Looping

Image Source: https://images.app.goo.gl/4RUMqV2539YMXMQN7

Image Source: https://images.app.goo.gl/4RUMqV2539YMXMQN7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/4RUMqV2539YMXMQN7

Looping

Loop Types and Description

● The first statement in a function is

executed first, followed by the second,

and so on.

● . There may be a situation when you

need to execute a block of code several

number of times.

● A loop statement allows us to execute a

statement or group of statements

multiple times.

● The following diagram illustrates a loop

statement −

Image Source: https://images.app.goo.gl/4RUMqV2539YMXMQN7

Image Source: https://images.app.goo.gl/4RUMqV2539YMXMQN7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/4RUMqV2539YMXMQN7

Looping

Loop Structure

● Program statement are executed

sequentially one after another. In

some situations, a block of code

needs of times.

● These are repetitive program

codes, the computers have to

perform to complete task, Image Source: https://images.app.goo.gl/h1FgsJh22U9bw7YR9

Image Source: https://images.app.goo.gl/h1FgsJh22U9bw7YR9

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/h1FgsJh22U9bw7YR9

Looping

Loop Structure (Contd..)

● The following are the loop

structures available in Python.

While Statement

For loop Statement

Nested Loop Statement

Image Source: https://images.app.goo.gl/h1FgsJh22U9bw7YR9

Image Source: https://images.app.goo.gl/h1FgsJh22U9bw7YR9

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/h1FgsJh22U9bw7YR9

Looping

● A while loop statement in Python

programming language repeatedly

executes a target statement as long as

a given condition is true.

● It test the condition before executing

the loop body.

● Syntax -

While expression:

Statements(s)

While Loop

Image Source: https://images.app.goo.gl/TYVJXYyhmei968UR7

Image Source: https://images.app.goo.gl/TYVJXYyhmei968UR7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/TYVJXYyhmei968UR7

Looping

While Loop (Contd..)

● Example Program-

count=0

while(count<5):

print(“The count is:”,count)

count=count+1

Looping

● Executes a sequence of

statements multiple times and

abbreviates the code that

manages the loop variable.

● Syntax-

for iterating_var in sequence:

statements(s)

For Loop

Image Source: https://images.app.goo.gl/jkyK2o4AqeCqvGmh7

Image Source: https://images.app.goo.gl/jkyK2o4AqeCqvGmh7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/jkyK2o4AqeCqvGmh7

Looping

For Loop (Contd..)

● Example Program-

fruits=[“apple”,”banana”,”cherry”]

For x in fruits:

print(x)

Looping

Nested Loop

● You can use one or more loop inside

any another while, for or do..while

loop.

● A nested loop is a loop inside a loop.

● The "inner loop" will be executed one

time for each iteration of the "outer

loop".

Image Source: https://images.app.goo.gl/4e1ecHdCRFYfqj6z7

Image Source: https://images.app.goo.gl/4e1ecHdCRFYfqj6z7

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/4e1ecHdCRFYfqj6z7

Looping

● Example Program-

adj=[“red”,”big”]

fruits=[“apple”,”banana”]

For x in adj:

For y in fruits:

print(x,y)

Nested Loop (Contd..)

Control Statement

Image Source: https://images.app.goo.gl/naAsWZSy7bGzRCVo8

Image Source: https://images.app.goo.gl/naAsWZSy7bGzRCVo8

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/naAsWZSy7bGzRCVo8

Control Statement

● Loop control statements change

execution from its normal sequence.

● When execution leaves a scope, all

automatic objects that were created in

that scope are destroyed

● Python supports the following control

statements.

Break Statement

Continue Statement

Pass Statement

Loop Control Statement

Image Source: https://images.app.goo.gl/naAsWZSy7bGzRCVo8

Image Source: https://images.app.goo.gl/naAsWZSy7bGzRCVo8

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/naAsWZSy7bGzRCVo8

Control Statement

Break Statement

● Terminates the loop statement

and transfers execution to the

statement immediately

following the loop.

● If break statement inside a

nested loop (loop inside

another loop), break will

terminate the innermost loop.

Image Source: https://images.app.goo.gl/JXcQJhxUkA1Z4qiy9

Image Source: https://images.app.goo.gl/JXcQJhxUkA1Z4qiy9

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/JXcQJhxUkA1Z4qiy9

Control Statement

● Example Program-

For num in[11, 9, 88, 10, 90, 3, 19]:

print(num)

if(num==88):

print(“The number 88 is found”)

print(“Terminating the loop”)

Break

Break Statement (Contd..)

Control Statement

Continue Statement

● Causes the loop to skip the

remainder of its body and

immediately retest its condition

prior to reiterating.

● The continue statement can be

used in both while and for loops.

Image Source: https://images.app.goo.gl/LqptGF2grWpkdqWw6

Image Source: https://images.app.goo.gl/LqptGF2grWpkdqWw6

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/LqptGF2grWpkdqWw6

Control Statement

● Example Program-

● For num in[20, 11, 9, 66, 4, 89, 44]:

If num%2==0:

continue

print(num)

Continue Statement (Contd..)

Control Statement

● The pass statement in Python is used

when a statement is required syntactically

but you do not want any command or code

to execute.

● The interpreter does not ignore a pass

statement, but nothing happens and the

statement results into no operation.

Pass Statement

Image Source: https://images.app.goo.gl/Z9BnvaYpSLpGG6G86

Image Source: https://images.app.goo.gl/Z9BnvaYpSLpGG6G86

https://images.app.goo.gl/61fVvm834STCtJW89
https://images.app.goo.gl/Z9BnvaYpSLpGG6G86

Control Statement

● Example Program-

For num in [20, 11, 9, 66, 89, 44]:

If num%2==0:

Pass

else:

print(num)

Pass Statement (Contd..)

String Manipulation

Image Source: https://static.javatpoint.com/python/images/strings-

indexing-and-splitting2.png

https://static.javatpoint.com/python/images/strings-indexing-and-splitting2.png
https://static.javatpoint.com/python/images/strings-indexing-and-splitting2.png

String Manipulation

● Python string is an ordered collection of

characters which is used to represent and

store the text-based information.

● Strings are stored as individual characters

in a contiguous memory location.

● It can be accessed from both directions:

forward and backward.

● Characters are nothing but symbols.

● Strings are immutable, which means that

once a string is created, they cannot be

changed.

Introduction

Image Source: https://static.javatpoint.com/python/images/strings-

indexing-and-splitting2.png

https://static.javatpoint.com/python/images/strings-indexing-and-splitting2.png
https://static.javatpoint.com/python/images/strings-indexing-and-splitting2.png

String Manipulation

Create Strings

● Strings can be created by enclosing

characters inside a single quote or

double-quotes.

● Even triple quotes can be used in

Python but generally used to represent

multiline strings and docstrings.

String Manipulation

Index and Slice - Indexing

Python allows to index from the 0
th

position in Strings. But it also

supports negative indexes.

● Index of ‘-1’ represents the last

character of the String.

● Similarly, using ‘-2’, we can access

the penultimate element of the string

and so on.
Image Source :

https://cdn.techbeamers.com/wp-content/uploads/2016/03/String-

Representation-in- Python.png

https://cdn.techbeamers.com/wp-content/uploads/2016/03/String-Representation-in-%20%20Python.png
https://cdn.techbeamers.com/wp-content/uploads/2016/03/String-Representation-in-%20%20Python.png

String Manipulation

Index and Slice - Slicing

● To retrieve a range of characters in

a String, we use ‘slicing operator,’

the colon ‘:’ sign.

● With the slicing operator, we define

the range as [a:b].

● Let us print all the characters of the

String starting from index ‘a’ up to

char at index ‘b-1’. So the char at

index ‘b’ is not a part of the output.

Image Source :

https://cdn.techbeamers.com/wp-content/uploads/2016/03/String-

Representation-in- Python.png

https://cdn.techbeamers.com/wp-content/uploads/2016/03/String-Representation-in-%20%20Python.png
https://cdn.techbeamers.com/wp-content/uploads/2016/03/String-Representation-in-%20%20Python.png

String Manipulation

Modify/Delete Strings

● Python Strings are by design immutable. It

suggests that once a String binds to a

variable, it can’t be modified.

● If you want to update the String, then re-

assign a new String value to the same

variable.

● We cannot delete or remove characters

from a string. But deleting the string

entirely is possible using the keyword del.

String Manipulation

String Operators

● There are many operations that can

be performed with string

Image Source : https://www.programiz.com/python-programming

http://www.programiz.com/python-programming

String Manipulation

String Formatting Operators

● An Escape sequence starts with a

backslash (\), which signals the

compiler to treat it differently.

● Python subsystem automatically

interprets an escape sequence

irrespective of it is in a single-

quoted or double-quoted Strings.

Image Source:

https://www.techbeamers.com/python-strings-functions-and-

examples/#strin g-formatting-operators-in-python

https://www.techbeamers.com/python-strings-functions-and-examples/
https://www.techbeamers.com/python-strings-functions-and-examples/

String Manipulation

String Formatting Operators

● Python Format Characters

● String ‘%’ operator issued for

formatting Strings. We often use

this operator with the print()

function.
Image Source:

https://www.techbeamers.com/python-strings-functions-and-

examples/#strin g-formatting-operators-in-python

https://www.techbeamers.com/python-strings-functions-and-examples/
https://www.techbeamers.com/python-strings-functions-and-examples/

String Manipulation

Unicode String support

● Regular Strings stores as the 8-bit ASCII

value, whereas Unicode String follows

the 16-bit ASCII standard.

● This extension allows the strings to

include characters from the different

languages of the world.

● In Python, the letter ‘u’ works as a prefix

to distinguish between Unicode and

usual strings.

String Manipulation

Built-in String Functions

● Conversion Functions

● Comparison Functions

● Padding Functions

● Search Functions

● String Substitution Functions

● Misc String Functions

For more information and all functions check this link

https://docs.python.org/2/library/string.html

https://docs.python.org/2/library/string.html

String Manipulation

Regular Expressions

● A RegEx, or Regular Expression, is a

sequence of characters that forms a

search pattern.

● RegEx can be used to check if a string

contains the specified search pattern.

● Python has a built-in package called re,

which can be used to work with Regular

Expressions.

List

List

Python List & Create List

● In Python programming, a list is

created by placing all the items

(elements) inside a square bracket

[], separated by commas.

● It can have any number of items

and they may be of different types

(integer, float, string etc.).

List

Creating Multi-dimensional Lists

● A list can hold other lists as well

which can result in multi-

dimensional lists.

Image Source : https://intellipaat.com/blog/tutorial/python-

tutorial/python-lists/

https://intellipaat.com/blog/tutorial/python-tutorial/python-lists/
https://intellipaat.com/blog/tutorial/python-tutorial/python-lists/

List

Access elements from a list List

indexing

● Index operator : The simplest one is to

use the index operator ([]) to access an

element from the list. Since the list has

zero as the first index, so a list of size ten

will have indices from 0 to 9.

● Any attempt to access an item beyond

this range would result in an IndexError.

The index is always an integer.

● Using any other type of value will lead to

TypeError.

List

Access elements from a list

Reverse/Negative indexing

● Reverse indexing : Python enables

reverse (Negative) indexing for the

sequence data type. So, for the Python

list to index in the opposite order, you

need to set the index using the minus (-)

sign. Indexing the list with “-1” will return

the last element of the list, -2 the second

last and so on.

List

List slicing

● Python comes with a magical slice

operator which returns the part of

a sequence.

● It operates on objects of different data

types such as strings, tuples, and

works the same on a Python list.

List

Change or Add elements

● List are mutable, meaning, their

elements can be changed unlike string or

tuple.

● We can use assignment operator (=) to

change an item or a range of items.

● We can also use + operator to combine

two lists. This is also called

concatenation.

● The * operator repeats a list for the

given number of times.
Image Source: https://www.programiz.com/python-

programming

http://www.programiz.com/python-programming
http://www.programiz.com/python-programming

List

Elegant way to create new List

● List comprehension is an elegant and

concise way to create a new list from an

existing list in Python.

● List comprehension consists of an

expression followed by for statement

inside square brackets.

● A list comprehension can optionally

contain more for or if statements.

● An optional if statement can filter out

items for the new list.

● We can test if an item exists in a list or not,

using the keyword in. Image Source: https://www.programiz.com/python-programming

http://www.programiz.com/python-programming

Tuple

Tuple

Tuple & Create Tuple

● A tuple in Python is similar to a list. The

difference between the two is that we

cannot change the elements of a tuple

once it is assigned whereas, in a list,

elements can be changed.

● A tuple is created by placing all the items

(elements) inside parentheses (), separated

by commas.

● A tuple can have any number of items and

they may be of different types (integer,

float, list, string, etc.).

Tuple

Access Tuple Elements

● Indexing - We can use the index operator []

to access an item in a tuple where the

index starts from 0.

● So, a tuple having 6 elements will have

indices from 0 to 5. Trying to access an

element outside of tuple (for example, 6,

7,...) will raise an IndexError.

● The index must be an integer; so we

cannot use float or other types. This will

result in TypeError.

Tuple

Access Tuple Elements

● Python allows negative indexing

for its sequences.

● The index of -1 refers to the last

item, -2 to the second last item

and so on.

Tuple

Access Tuple Elements

● We can access a range of items in a

tuple by using the slicing operator -

colon ":".

● Slicing can be best visualized by

considering the index to be between the

elements as shown below. So if we want

to access a range, we need the index

that will slice the portion from the tuple.

Tuple

● Tuple cannot be changed once it has

● been assigned.

● the element is itself a mutable datatype

like list, its nested items can be changed.

● + operator to combine two tuples

● repeat the elements in a tuple for a given

number of times using

● the * operator.

● Cannot delete or remove items from a

tuple.

● Deleting a tuple entirely is possible

Performing Operations Modifying, Deleting

Function & Methods

Image source: https://techvidvan.com/tutorials/python-methods-vs-

functions/

https://techvidvan.com/tutorials/python-methods-vs-functions/
https://techvidvan.com/tutorials/python-methods-vs-functions/

Function & Methods

Why functions required??

● Functions in Python are a set of related

statements grouped together to carry out

a specific task.

● Including functions in our program helps in

making it much more organized and

manageable.

● Especially, if we are working on a large

program, having smaller and modular

chunks of code blocks will increase the

readability of the code along with providing

it reusability.

Image source: https://techvidvan.com/tutorials/python-methods-vs-

functions/

https://techvidvan.com/tutorials/python-methods-vs-functions/
https://techvidvan.com/tutorials/python-methods-vs-functions/

Function & Methods

Create & Def Statement

● The def keyword is used to start the

function definition.

● The def keyword is followed by a function-

name which is followed by parentheses

containing the arguments passed by the

user and a colon at the end.

● After adding the colon, the body of the

function starts with an indented block in a

new line.

● The return statement sends a result

object back to the caller.

Image Source : https://intellipaat.com/blog/tutorial/python-

tutorial/python-functions/

https://intellipaat.com/blog/tutorial/python-tutorial/python-functions/
https://intellipaat.com/blog/tutorial/python-tutorial/python-functions/

Function & Methods

Calling a Function

● To call a function we simply type the

function name with appropriate

parameters.

Function & Methods

Function works & Types

● Basically, we can divide functions into

the following two types:

● Built-in functions - Functions that are

built into Python.

● User-defined functions - Functions

defined by the users themselves

Image Source: https://www.programiz.com/python-programming

http://www.programiz.com/python-programming

Function & Methods

Arguments

● Define a function that takes

variable number of arguments.

Function & Methods

Global, Local and Nonlocal

● Global variable can be accessed

inside or outside of the function.

● A variable declared inside the

function's body or in the local

scope is known as local variable.

Function & Methods

● Nonlocal variable are used in nested function

whose local scope is not defined. This

means, the variable can be neither in the

local nor the global scope.

● We use nonlocal keyword to create nonlocal

variable.

● In Python, global keyword allows you to

modify the variable outside of the current

scope.

● It is used to create a global variable and

make changes to the variable in a local

context.

Global, Local and Nonlocal

Function & Methods

Return statement

● return statement is used to exit a

function and go back to the place

from where it was called.

Function & Methods

Scope and Lifetime of variables

● Scope of a variable is the portion of a

program where the variable is recognized.

Parameters and variables defined inside a

function is not visible from outside. Hence,

they have a local scope.

● Lifetime of a variable is the period

throughout which the variable exits in the

memory. The lifetime of variables inside a

function is as long as the function

executes.

● They are destroyed once we return from

the function.

Function & Methods

Functions as Objects

● Python treats everything as an

object and functions are no

different

Function & Methods

Function Attributes

● Python functions also have attributes.

● You can list them via the dir() built-in

function.

● The attributes can be system-defined.

● Some of them can be user-defined as

well.

● The dir() function also lists the user-

defined attributes.

Dictionary

Dictionary

Create a Dictionary

● Python dictionary is an unordered

collection of items. While other

compound data types have only value as

an element, a dictionary has a key: value

pair.

● Dictionaries are optimized to retrieve

values when the key is known.

Dictionary

● Creating a dictionary is as simple as placing

items inside curly braces {} separated by

comma.

● An item has a key and the corresponding

value expressed as a pair, key: value.

● While values can be of any data type and

can repeat, keys must be of immutable type

● (string, number or tuple with immutable

elements) and must be unique.

● we can also create a dictionary using -

Create a Dictionary

Dictionary

Access elements from a dictionary

● While indexing is used with other

container types to access values,

dictionary uses keys. Key can be used

either inside square brackets or with the

get() method.

● The difference while using get() is that it

returns None instead of KeyError, if the

key is not found.

Dictionary

Change or Add elements

● Dictionary are mutable. We can add new

items or change the value of existing

items using assignment operator.

● If the key is already present, value gets

updated, else a new key: value pair is

added to the dictionary.

Dictionary

● We can remove a particular item in a

dictionary by using the method pop(). This

method removes as item with the provided

key and returns the value.

● The method, popitem() can be used to

remove and return an arbitrary item (key,

value) form the dictionary. All the items can

be removed at once using the clear()

method.

● We can also use the del keyword to remove

individual items or the entire dictionary

itself.

Delete or Remove elements

Dictionary

● Refer this link for more information

● https://docs.python.org/3/tutorial/d

atastr uctures.html

Example for use dictionary methods

Common Python Dictionary Methods

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html

Functions

Built-in Functions Dictionary

● Built-in functions like all(), any(), len(),

cmp(), sorted() etc. are commonly used

with dictionary to perform different tasks.

Functions

Lambda Functions

● Use Def keyword: It creates a function

object and assigns it to a name.

● Use lambda: It creates an inline function

and returns it as a result.

● A lambda function is a lightweight

anonymous function. It can accept any

number of arguments but can only have a

single expression.

Functions

Use of Lambda Functions

● A Lambda function behaves like a regular

function, takes an argument, and returns

a value but is not bound to any name or

identifier. There is no need to use the

return statement in a lambda function in

Python; it will always return the value

obtained by evaluating the lambda

expression in Python

Image Source : https://www.techbeamers.com/python-lambda/

http://www.techbeamers.com/python-lambda/

Functions

Properties of Lambda Functions

● Anonymous functions created using the lambda

keyword can have any number of arguments, but

they are syntactically restricted to just one

expression, that is, they can have only one

expression.

● Lambda function in Python can be used wherever

a function object is required.

● Lambda functions do not require any return

statement; they always return a value obtained by

evaluating the lambda expression in Python.

● Python Lambda functions are

widely used with some Python built-in function.

Image Source : https://www.techbeamers.com/python-lambda/

http://www.techbeamers.com/python-lambda/

Functions

Built in Functions

● Map functions over iterables –

map()

● Select items in iterables – filter()

● Aggregate items in iterables –

reduce()

Modules

● Import: Lets a client obtain a module as a

whole

● From: Permits a client to fetch particular

names from a module

● Reload: Gives a way to reload a code of

module without stopping Python

Modules

What are modules?

● In Python, modules are used to divide the

code into smaller parts. In this, we can

group similar data which makes the

program easier to understand.

● The module is a simple Python file which

can contain (Python functions, python

variables, python classes) .

● Modules are processed with two new

statements and one important built-in

function

● Import: Lets a client obtain a module as a

whole

● From: Permits a client to fetch particular

names from a module

● Reload: Gives a way to reload a code of

module without stopping Python

Modules

import statement import with renaming

● import statement - We can import a

module using import statement and

access the definitions inside it using the

dot operator as described rightside.

● import with renaming- We can import a

module by renaming it as follows.

Modules

Import modules

● We can import the definitions inside a

module to another module or the

interactive interpreter in Python.

● We use the import keyword to do this

Modules

● Python from...import statement

● We can import specific names from a

module without importing the module

as a whole.

● Import all names

● We can import all names(definitions)

from a module using the following

construct.

from...import statement

Import all names

Modules

● While importing a module, Python looks at

several places. Interpreter first looks for a

built-in module then (if not found) into a list

of directories defined in sys.path. The

search is in this order.

● The current directory.

● PYTHONPATH (an environment variable

with a list of directory).

● The installation-dependent default

directory.

Module Search Path

Modules

Reloading a module

● The Python interpreter imports a module

only once during a session. This makes

things more efficient.

● Python provides a neat way of doing

this. We can use the reload() function

inside the imp module to reload a

module.

Modules

dir() built-in function

● We can use the dir() function to find out

names that are defined inside a module.

Modules

● Similar, as a directory can contain sub-

directories and files, a Python package

can have sub-packages and modules.

● A directory must contain a file

● Named init .py in order for Python to

consider it as a package. This file can

be left empty but we generally place the

initialization code for that package in

this file.
Image Source:https://www.programiz.com/python-

programming/package

Package

https://www.programiz.com/python-programming/package
https://www.programiz.com/python-programming/package

Modules

Importing module from a package

● We can import modules from

packages using the dot (.)

operator

● For examples : 3 different types of

imports

Input and Output

Input and Output

Output

● print() function to output data to the

standard output device (screen).

● str.format() method - format our output

to make it look attractive

● curly braces {} are used as

placeholders. We can specify the order

in which they are printed by using

numbers (tuple index)

Input and Output

● To allow flexibility, we might want to take

the input from the user.

● In Python, we have the input() function to

allow this.

● To convert this into a number we can use

int() or float() functions.

● Above same operation can be performed

using the eval() function. But eval takes it

further.

● It can evaluate even expressions, provided

the input is a string

Input

Input and Output

Manual String Formatting

● See Notes section with examples

Input and Output

File handling means

● File is a named location on the

system storage which records data for

later access. It enables persistent

storage in a non-volatile memory i.e.

Hard disk.

Input and Output

Python file handling

● Python I/O deal with two types of files.

● Text & Binary Files

● Even though the two file types may look

the same on the surface, they encode

data differently.

● See notes section for more information

Input and Output

● In Python, file processing takes

place in the following order.

● Open a file that returns a

filehandle.

● Use the handle to perform read

or write action.

● Close the filehandle.

Input and Output

Open a file in Python

● To read or write to a file, you need

to open it first. To open a file in

Python, use its built open()

function. This function returns a

file object, i.e., a handle. You can

use it to read or modify the file.

Input and Output

● We can specify the mode while opening a

file. In mode, we specify whether we want

to read 'r', write 'w' or append 'a' to the file.

We also specify if we want to open the file

in text mode or binary mode.

● The default is reading in text mode. In this

mode, we get strings when reading from

the file.

● Hence, when working with files in text

mode, it is highly recommended to specify

the encoding type.

Input and Output

Python file object attributes

● When you call the Python open()

function, it returns an object,

which is the filehandle. Also, you

should know that Python files

have several linked attributes.

And we can make use of the

filehandle to list the attributes of a

file.

Input and Output

Python File object methods

● file.close()

● file.flush()

● file.isatty()

● file.tell()

● file.write(string)

● file.next()

● file.read(size)

● See notes section for description

Image source -

https://www.slideshare.net/p3infotech_solutions/python-

programming-essentials-m22-file-opera

http://www.slideshare.net/p3infotech_solutions/python-programming-essentials-m22-file-opera
http://www.slideshare.net/p3infotech_solutions/python-programming-essentials-m22-file-opera

Input and Output

● When we are done with operations to the

file, we need to properly close the file.

● Closing a file will free up the resources that

were tied with the file and is done using

Python close() method.

● Python has a garbage collector to clean up

unreferenced objects but, we must not rely

on it to close the file.

close a file

Input and Output

write() file method

● Python provides the write() method to

write a string or sequence of bytes to

a file. This function returns a number,

which is the size of data written in a

single Write call.

Input and Output

● To read data from a file, first of all, you

need to open it in reading mode. Then,

you can call any of the methods that

Python provides for reading from a file.

● Usually, we use

● Python <read(size)> function to read

the content of a file up to the size. If you

don’t pass the size, then it’ll read the

whole file.

Perform read operation

Input and Output

Set File offset

● Tell() Method

● Syntax: file.tell()

Seek() Method

● Syntax: file.seek(offset[, from])

Input and Output

Renaming and deleting files

● Rename - os.rename(cur_file,

new_file) The <rename()> method

takes two arguments, the current

filename and the new filename.

● Remove - os.remove(file_name)

● The <remove()> method deletes a file

which it receives in the argument.

Input and Output

Python Copy File – 9 Ways

● Different methods to do Python

copy file operation.

Image Source: https://www.techbeamers.com/python-copy-file/

http://www.techbeamers.com/python-copy-file/

Exception Handling

Exception Handling

Error vs. Exception in Python

● Error - Error is something that goes

wrong in the program, e.g., like a

syntactical error. It occurs at compile

time.

● Exception - An exception is an event

which occurs during the execution of a

program and disrupts the normal flow of

the program’s instructions.

Exception Handling

● Try-Except Statement?

● We use the try-except statement

to enable exception handling in

Python programs.

● Inside the try block, you write the

code which can raise an

exception.

● And the code that handles or

catches the exception, we place

in the except clause.

Handle Exceptions

Exception Handling

Exception Handling Examples

Exception Handling

Handling All Types of Exceptions

with Except

● If we use a bare “except” clause,

then it would catch all types of

exceptions.

Exception Handling

Handling Multiple Exceptions with

Except

● We can define multiple exceptions with

the same except clause. It means that

if the Python interpreter finds a

matching exception, then it’ll execute

the code written under the except

clause.

Exception Handling

Handle Exceptions with Try-Finally

● With try block, we also have the option

to define the “finally” block. This clause

allows defining statements that we want

to execute, no matters whether the try

block has raised an exception or not

Exception Handling

Raise Exception with Arguments

● What is Raise?

● We can forcefully raise an exception

using the raise keyword.

● We can also optionally pass values to

the exception and specify why it has

occurred.

Exception Handling

Create Custom Exceptions

● A custom exception is one which the

programmer creates himself.

● He does it by adding a new class. The

trick here is to derive the custom

exception class from the base

exception class.

● Most of the built-in exceptions do also

have a corresponding class

Exception Handling

Python Built-in Exceptions

● Arithmetic Error

● Assertion Error

● Attribute Error

● EOF Error

● Environment Error

● Floating Point Error

● IO Error

● Memory Error

● Zero Division Error

Object Oriented Programming

● Object-oriented programming (OOP) is a method

of structuring a program by bundling related

properties and behaviors into individual objects.

● Conceptually, objects are like the components of

a system. Think of a program as a factory

assembly line of sorts. At each step of the

assembly line a system component processes

some material, ultimately transforming raw

material into a finished product.

● An object contains data, like the raw or

preprocessed materials at each step on an

assembly line, and behavior, like the action each

assembly line component performs. Image source - https://images.app.goo.gl/aWykp4Cd11vrda3k8

https://images.app.goo.gl/aWykp4Cd11vrda3k8

OOPS in Python

● Object-oriented programming is a

programming paradigm that provides a

means of structuring programs so that

properties and behaviors are bundled into

individual objects.

● For instance, an object could represent a

person with properties like a name, age,

and address and behaviors such as

walking, talking, breathing, and running. Or

it could represent an email with properties

like a recipient list, subject, and body and

behaviors like adding attachments and

sending.
Image source - https://images.app.goo.gl/aWykp4Cd11vrda3k8

https://images.app.goo.gl/aWykp4Cd11vrda3k8

OOPS in Python

● Put another way, object-oriented programming is

an approach for modeling concrete, real-world

things, like cars, as well as relations between

things, like companies and employees, students

and teachers, and so on. OOP models real-world

entities as software objects that have some data

associated with them and can perform certain

functions.

● Another common programming paradigm is

procedural programming, which structures a

program like a recipe in that it provides a set of

steps, in the form of functions and code blocks, that

flow sequentially in order to complete a task.

Image source - https://images.app.goo.gl/6X4t6Kvg3XSFVgtU6

https://images.app.goo.gl/6X4t6Kvg3XSFVgtU6

OOPS in Python

● Object

● Class

● Inheritance

● Polymorphism

● Abstraction

● Encapsulation

Image source- https://images.app.goo.gl/gNm4QJbMV9WwXYeL6

https://images.app.goo.gl/gNm4QJbMV9WwXYeL6

Class in Python

● Primitive data structures—like numbers,

strings, and lists—are designed to

represent simple pieces of information,

such as the cost of an apple, the name of

a poem, or your favorite colors,

respectively. What if you want to represent

something more complex?

● For example, let’s say you want to track

employees in an organization. You need to

store some basic information about each

employee, such as their name, age,

position, and the year they started

working.
Image source- https://images.app.goo.gl/gNm4QJbMV9WwXYeL6

https://images.app.goo.gl/gNm4QJbMV9WwXYeL6

Class in Python

● There are a number of issues with this approach.

● First, it can make larger code files more difficult to

manage. If you reference kirk[0] several lines

away from where the kirk list is declared, will you

remember that the element with index 0 is the

employee’s name?

● Second, it can introduce errors if not every

employee has the same number of elements in

the list. In the mccoy list above, the age is

missing, so mccoy[1] will return "Chief Medical

Officer" instead of Dr. McCoy’s age.

● A great way to make this type of code more

manageable and more maintainable is to use

classes.

Classes vs Instances

● Classes are used to create user-defined data structures. Classes define functions called

methods, which identify the behaviors and actions that an object created from the class can

perform with its data.

● Now create a Dog class that stores some information about the characteristics and

behaviors that an individual dog can have.

● A class is a blueprint for how something should be defined. It doesn’t actually contain any

data. The Dog class specifies that a name and an age are necessary for defining a dog, but

it doesn’t contain the name or age of any specific dog.

● While the class is the blueprint, an instance is an object that is built from a class and

contains real data. An instance of the Dog class is not a blueprint anymore. It’s an actual

dog with a name, like Miles, who’s four years old.

How to define a class

● All class definitions start with the class

keyword, which is followed by the name of

the class and a colon. Any code that is

indented below the class definition is

considered part of the class’s body.

● Here’s an example of a Dog class:

class Dog:

pass

● The body of the Dog class consists of a

single statement: the pass keyword. pass is

often used as a placeholder indicating where

code will eventually go. It allows you to run

this code without Python throwing an error.

How to define a class

● The Dog class isn’t very interesting right now, so

let’s spruce it up a bit by defining some properties

that all Dog objects should have. There are a

number of properties that we can choose from,

including name, age, coat color, and breed. To keep

things simple, we’ll just use name and age.

● The properties that all Dog objects must have are

defined in a method called .__init__(). Every time a

new Dog object is created, .__init__() sets the initial

state of the object by assigning the values of the

object’s properties. That is, .__init__() initializes

each new instance of the class.

How to define a class

● In the body of .__init__(), there are two statements

using the self variable:

● Attributes created in .__init__() are called instance

attributes. An instance attribute’s value is specific to

a particular instance of the class. All Dog objects

have a name and an age, but the values for the

name and age attributes will vary depending on the

Dog instance.

● On the other hand, class attributes are attributes

that have the same value for all class instances.

You can define a class attribute by assigning a

value to a variable name outside of .__init__().

Encapsulation in Python

● Encapsulation is one of the fundamental

concepts in object-oriented programming

(OOP).

● It describes the idea of wrapping data

and the methods that work on data within

one unit. This puts restrictions on

accessing variables and methods directly

and can prevent the accidental

modification of data.

● To prevent accidental change, an object’s

variable can only be changed by an

object’s method. Those types of

variables are known as private variables.

Image source -https://images.app.goo.gl/gjCCBpgATvRdmFNA7

https://images.app.goo.gl/gjCCBpgATvRdmFNA7

Inheritance in Python

● Inheritance enables us to define a class

that takes all the functionality from a

parent class and allows us to add more.

● Inheritance is a powerful feature in object

oriented programming.

● It refers to defining a new class with little

or no modification to an existing class.

The new class is called derived (or child)

class and the one from which it inherits is

called the base (or parent) class.

Image source -https://images.app.goo.gl/UGsMbVSTVbetG8B1A

https://images.app.goo.gl/UGsMbVSTVbetG8B1A

Example of Inheritance

● To demonstrate the use of inheritance, let us take

an example.

● A polygon is a closed figure with 3 or more sides.

Say, we have a class called Polygon defined as

follows.

● This class has data attributes to store the number

of sides n and magnitude of each side as a list

called sides.

● The inputSides() method takes in the magnitude of

each side and dispSides() displays these side

lengths.

● A triangle is a polygon with 3 sides. So, we can

create a class called Triangle which inherits from

Polygon. This makes all the attributes of Polygon

class available to the Triangle class.

Example of Inheritance

● We don't need to define them again (code

reusability).

● Triangle can be defined as follows.

Example of Inheritance

● However, class Triangle has a new method

findArea() to find and print the area of the

triangle. Here is a sample run.

● We can see that even though we did not

define methods like inputSides() or

dispSides() for class Triangle separately, we

were able to use them.

● If an attribute is not found in the class itself,

the search continues to the base class. This

repeats recursively, if the base class is itself

derived from other classes.

Polymorphism

● In Python, Polymorphism lets us define

methods in the child class that have the

same name as the methods in the parent

class.

● In simple words, we can define

polymorphism as the ability of a message to

be displayed in more than one form.

● A real-life example of polymorphism, a

person at the same time can have different

characteristics. Like a man at the same time

is a father, a husband, an employee.

Image source -https://images.app.goo.gl/4n9APBRvUHQqBqor8

https://images.app.goo.gl/4n9APBRvUHQqBqor8

Self Parameter

● Methods or functions should have self as

first parameter.

● When objects are instantiated, the object

itself is passed into the self parameter.

● The self parameter is a reference to the

current instance of the class, and is used to

access variables that belongs to the class.

● It does not have to be named self , you can

call it whatever you like, but it has to be the

first parameter of any function in the class.

Image source -https://images.app.goo.gl/53w7TN9iWnHjbuZE6

https://images.app.goo.gl/53w7TN9iWnHjbuZE6

Returning Values

class student:
def details(self,n,a):

self.name=n
self.age=a

def display(self):
return(self.name,self.age)

s=student()
s.details (“xyz”,30)
m,n=s.display()
print(“details are”,m,n)

Output
details are xyz 30

● A return statement is used to end the

execution of the function call .

● It “returns” the result (value of the

expression following the return

keyword) to the caller.

Instances as return values

class student:
def details(self,n,a):

self.name=n
self.age=a

def display(self):
return(self)

s=student()
s.details (“xyz”,30)
s1=s.display()
print(“details are “, s1.name,s1.age)

Output
details are xyz 30

Constructors

● It is a special method that is automatically

invoked right after a new object is created.

● It is used to initialize the attribute values of

new object created.

● __init__() is a reserved method

in python classes. It is called as

a constructor in object oriented terminology.

● This method is called when an object is

created from a class and it allows the class

to initialize the attributes of the class

Image Source: https://www.studytonight.com/python/constructors-

in-python

https://www.studytonight.com/python/constructors-in-python
https://www.studytonight.com/python/constructors-in-python

Syntax for constructor

declaration
def __init__(self):

body of constructor

Constructor Types

● Default Constructor

● Doesn’t have any arguments

● It has only one argument which is a

reference to the instance being

constructed

● Parameterized Constructor

● constructor with parameters

● first argument is reference to instance

Image source- https://images.app.goo.gl/FWHxRVxD7qWEHy9R8

https://images.app.goo.gl/FWHxRVxD7qWEHy9R8

Example – Default

Constructor

class student:

def __init__(self):

self.name=“xyz”

self.age=30

def display(self):

print(“details are”,self.name,self.age)

s=student(“xyz”,30)

s.display()

Output

details are xyz 30

Example – Parameterized

Constructor

class student:
def __init__(self,n,a):

self.name=n
self.age=a

def display(self):
print(“details are”,self.name,self.age)

s=student(“xyz”,30)
s.display()

Output

details are xyz 30

Class variables and

Instance Variables

● Class Variables — Declared inside the class

definition (but outside any of the instance methods).

They are not tied to any particular object of the class,

hence shared across all the objects of the class.

Modifying a class variable affects all objects instance

at the same time.

● Instance Variable — Declared inside the constructor

method of class (the __init__ method). They are tied

to the particular object instance of the class, hence

the contents of an instance variable are completely

independent from one object instance to the other.

class Car:

wheels = 4 # Class variable

def __init__(self, name):

self.name = name #Instance variable

Destructors in Python

● When an object is destroyed, destructors

are invoked. Destructors aren't as important

in Python as they are in C++ because

Python has a garbage collector that

handles memory management for you.

● In Python, the del () function is known as a

destructor method. It is called after all

references to the object have been

destroyed i.e when an object is garbage

collected.

● Syntax:
def __del__(self):

body of destructor
Image source -https://images.app.goo.gl/CPtf96eobgf24M3MA

https://images.app.goo.gl/CPtf96eobgf24M3MA

Database

MySQL Database

● MySQL is one of the most popular database

management systems (DBMSs) on the

market today.

● It ranked second only to the Oracle DBMS

in this year’s DB-Engines Ranking.

● As most software applications need to

interact with data in some form,

programming languages like Python provide

tools for storing and accessing these data

sources.

Database

MySQL Database

● Being open source since its inception in

1995, MySQL quickly became a market

leader among SQL solutions.

● MySQL is also a part of the Oracle

ecosystem.

● While its core functionality is completely

free, there are some paid add-ons as well.

● Currently, MySQL is used by all major tech

firms, including Google, LinkedIn, Uber,

Netflix, Twitter, and others.

Database

MySQL Database

● Ease of installation: MySQL was designed to be user-friendly. It’s quite straightforward to set

up a MySQL database, and several widely available third-party tools, like phpMyAdmin,

further streamline the setup process. MySQL is available for all major operating systems,

including Windows, macOS, Linux, and Solaris.

● Speed: MySQL holds a reputation for being an exceedingly fast database solution. It has a

relatively smaller footprint and is extremely scalable in the long run.

● User privileges and security: MySQL comes with a script that allows you to set the password

security level, assign admin passwords, and add and remove user account privileges. This

script uncomplicates the admin process for a web hosting user management portal. Other

DBMSs, like PostgreSQL, use config files that are more complicated to use.

Installing MySQL Connector/Python

MySQL Database

● A database driver is a piece of software that allows an application to connect and

interact with a database system. Programming languages like Python need a special

driver before they can speak to a database from a specific vendor.

● In Python you need to install a Python MySQL connector to interact with a MySQL

database. Many packages follow the DB-API standards, but the most popular among

them is MySQL Connector/Python. You can get it with pip:

● pip install mysql-connector-python

Installing MySQL Connector/Python

MySQL Database

● To test if the installation was successful, type the following command on your Python

terminal:

● import mysql.connector

● If the above code executes with no errors, then mysql.connector is installed and ready

to use. If you encounter any errors, then make sure you’re in the correct virtual

environment and you’re using the right Python interpreter.

● Make sure that you’re installing the correct mysql-connector-python package, which is a

pure-Python implementation. Beware of similarly named but now depreciated

connectors like mysql-connector.

Establishing a Connection With MySQL Server

MySQL Database

● MySQL is a server-based database management system. One server might contain multiple databases.

To interact with a database, you must first establish a connection with the server. The general workflow of

a Python program that interacts with a MySQL-based database is as follows:

● Connect to the MySQL server.

● Create a new database.

● Connect to the newly created or an existing database.

● Execute a SQL query and fetch results.

● Inform the database if any changes are made to a table.

● Close the connection to the MySQL server.

● This is a generic workflow that might vary depending on the individual application. But whatever the

application might be, the first step is to connect your database with your application.

Establishing a Connection With MySQL Server

MySQL Database

● The first step in interacting with a

MySQL server is to establish a

connection.

● To do this, you need connect() from the

mysql.connector module.

● This function takes in parameters like

host, user, and password and returns a

MySQLConnection object.

● You can receive these credentials as

input from the user and pass them to

connect():

Establishing a Connection With MySQL Server

MySQL Database

● There are several important things to notice in the code above:

● You should always deal with the exceptions that might be raised while establishing a connection to

the MySQL server. This is why you use a try … except block to catch and print any exceptions that

you might encounter.

● You should always close the connection after you’re done accessing the database. Leaving unused

open connections can lead to several unexpected errors and performance issues.

● You should never hard-code your login credentials, that is, your username and password, directly in

a Python script. This is a bad practice for deployment and poses a serious security threat. The code

above prompts the user for login credentials. It uses the built-in getpass module to hide the

password. While this is better than hard-coding, there are other, more secure ways to store sensitive

information, like using environment variables.

Creating a new database

MySQL Database

● To create a new database, you need

to execute a SQL statement:

● CREATE DATABASE books_db;

● The above statement will create a

new database with the name

books_db.

Creating a new database

MySQL Database

● To execute a SQL query in Python,

you’ll need to use a cursor, which

abstracts away the access to

database records.

● MySQL Connector/Python provides

you with the MySQLCursor class,

which instantiates objects that can

execute MySQL queries in Python.

● An instance of the MySQLCursor

class is also called a cursor.

● Cursor objects make use of a

MySQLConnection object to interact

with your MySQL server. To create a

cursor, use the .cursor() method of

your connection variable:

● cursor = connection.cursor()

● The above code gives you an

instance of the MySQLCursor class.

Show Database

MySQL Database

● You might receive an error here if a

database with the same name already

exists in your server.

● To confirm this, you can display the

name of all databases in your server.

● Using the same MySQLConnection

object from earlier, execute the

SHOW DATABASES statement:

Creating Tables

MySQL Database

● For creating tables we will follow the

similar approach of writing the SQL

commands as strings and then passing

it to the execute() method of the cursor

object.

● SQL command for creating a table is –

Creating Tables

MySQL Database

import mysql.connector

dataBase = mysql.connector.connect(host

="localhost",user ="user",passwd ="password",

database = "gfg")

cursorObject = dataBase.cursor()

studentRecord = """CREATE TABLE STUDENT

(NAME VARCHAR(20) NOT NULL, BRANCH

VARCHAR(50), ROLL INT NOT NULL,

SECTION VARCHAR(5), AGE INT)"""

table created

cursorObject.execute(studentRecord)

dataBase.close()

Insert Data into tables

● To insert data into the MySQL table Insert

into query is used.

● Syntax:

INSERT INTO table_name (column_names)

VALUES (data)

Inserting Multiple Rows

● To insert multiple values at once,

executemany() method is used. This

method iterates through the sequence of

parameters, passing the current

parameter to the execute method.

Fetching Data

● We can use the select query on the MySQL

tables

Where Clause

● Where clause is used in MySQL database

to filter the data as per the condition

required.

● You can fetch, delete or update a particular

set of data in MySQL database by using

where clause.

Update Data

● The update query is used to change

the existing values in a database. By

using update a specific value can be

corrected or updated. It only affects the

data and not the structure of the table.

The basic advantage provided by this

command is that it keeps the table

accurate.

Delete Data from Table

● We can use the Delete query to delete

data from the table in MySQL.

Drop Tables

● Drop command affects the structure of

the table and not data. It is used to

delete an already existing table. For

cases where you are not sure if the

table to be dropped exists or not DROP

TABLE IF EXISTS command is used.

Orberby Clause

● OrderBy is used to arrange the result

set in either ascending or descending

order.

● By default, it is always in ascending

order unless “DESC” is mentioned,

which arranges it in descending order.

● “ASC” can also be used to explicitly

arrange it in ascending order. But, it is

generally not done this way since

default already does that.

Web Development in Python

Django

● Can be used to generate HTML, CSV,

Email or any other format

● Supports many databases –

Postgresql, MySQL, Oracle, SQLite

● Middleware, csrf protections, sessions,

caching, authentication are also

included

features

Image source - http://www.djangoproject.com

http://www.djangoproject.com/

Python Flask

Image source -https://images.app.goo.gl/XTCDpKH23xj7DQrk7

https://images.app.goo.gl/XTCDpKH23xj7DQrk7

Python Flask

● Flask is a lightweight web application

framework.

● It is designed to make getting started

quick and easy.

● Able to scale ,up to complex

applications.

● Flask supports Python 3.7 and newer.

Image source -https://images.app.goo.gl/XTCDpKH23xj7DQrk7

https://images.app.goo.gl/XTCDpKH23xj7DQrk7

Installation

Create a project folder and a venv

folder within:

mkdir myproject

cd myproject

py -3 -m venv venv

Activate the environment

venv\Scripts\activate

Install Flask

pip install Flask
Image source -https://images.app.goo.gl/XTCDpKH23xj7DQrk7

https://images.app.goo.gl/XTCDpKH23xj7DQrk7

Simple Application

•First you need to import the Flask class.

•After that, we make an instance of the class.

__name__ is a handy shortcut for this that

works well in most cases.

•The route() decorator is then used to tell

Flask which URL should be used to call our

function.

•Because HTML is the default content type,

the browser will render HTML in the string.

Run the Application

We can run the application on command

prompt

➢set FLASK_APP=hello

➢ flask run

* Running on http://127.0.0.1:5000

Disclaimer: The content is curated for educational purposes only.

© Edunet Foundation. All rights reserved.

Python for Web-Django

(60 hours)

In this module, student will learn about:

© Edunet Foundation. All rights reserved.

● Web Framework, Django Introduction, Django Architecture

● Django MVC, MVT (Model View Template)

● Views and URL mapping, HttpRequest and HttpResponse , GET and

POST Method

● Template, Render, Views, Context

● Template Editing

● SQL operation in django

● Handling sessions, cookies and working with JSON and AJAX

Disclaimer: The content is curated for educational purposes only.

© Edunet Foundation. All rights reserved.

Web Framework, Django Introduction, Django

Architecture

In this sub-section, we will discuss:

© Edunet Foundation. All rights reserved.

● Web Framework

● Django Introduction

● Django Architecture

Web Framework

● A web framework (WF) or web application

framework (WAF) is a software framework

that is designed to support the development

of web applications including web services,

web resources, and web APIs.

● Web frameworks provide a standard way to

build and deploy web applications on the

World Wide Web.

● Web frameworks aim to automate the

overhead associated with common

activities performed in web development.

Image Source:https://www.scnsoft.com/blog/web-application-framework

https://www.scnsoft.com/blog/web-application-framework

Introduction to Django

● Django is a Python-based free and

open-source web framework that

follows the model–views-

template(MVT) architectural pattern.

● Django's primary goal is to ease the

creation of complex, database-driven

websites.

● The framework emphasizes reusability

and "pluggability" of components, less

code, low coupling, rapid

development, and the principle of

don't repeat yourself.
Image Source:

https://en.wikipedia.org/wiki/File:Django_2.1_landing_page.png

https://en.wikipedia.org/wiki/File:Django_2.1_landing_page.png

Django Features

● Helps you to define patterns for the URLs in your application

● Simple but powerful URL system

● Built-in authentication system

● Object-oriented programming language database which offers best in class data storage

and retrieval

● Automatic admin interface feature allows the functionality of adding, editing and deleting

items. You can customize the admin panel as per your need.

● It is used for Rapid Development

● Secure

● Open Source

● Vast and Supported Community

Django Architecture

● Django is based on MVT (Model-View-

Template) architecture. MVT is a

software design pattern for developing

a web application.

● M stands for Model

● V stands for View

● T stands for Template

Image Source: https://media.geeksforgeeks.org/wp-

content/uploads/20210606092225/image.png

Model-View-Template (MVT) Architecture

https://media.geeksforgeeks.org/wp-content/uploads/20210606092225/image.png
https://media.geeksforgeeks.org/wp-content/uploads/20210606092225/image.png

Model-View-Template (MVT) Architecture (Continued)

● MVT Structure has the following three parts –

● Model: The model is going to act as the interface of your data. It is responsible for

maintaining data. It is the logical data structure behind the entire application and is

represented by a database (generally relational databases such as MySql, Postgres).

● View: The View is the user interface — what you see in your browser when you render a

website. It is represented by HTML/CSS/Javascript and Jinja files.

● Template: A template consists of static parts of the desired HTML output as well as some

special syntax describing how dynamic content will be inserted.

Image Source: https://www.tutorialspoint.com/django/images/django_mvc_mvt_pattern.jpg

https://www.tutorialspoint.com/django/images/django_mvc_mvt_pattern.jpg

● Model View Controller or MVC as it is

popularly called, is a software design

pattern for developing web applications.

● A Model View Controller pattern is made

up of the following three parts −

● Model − The lowest level of the pattern

which is responsible for maintaining data.

● View − This is responsible for displaying all

or a portion of the data to the user.

● Controller − Software Code that controls

the interactions between the Model and

View.

Image Source: https://www.tutorialspoint.com/struts_2/images/struts-

mvc.jpg

Model-View-Controller (MVC)

Architecture

https://www.tutorialspoint.com/struts_2/images/struts-mvc.jpg
https://www.tutorialspoint.com/struts_2/images/struts-mvc.jpg

Model-View-Controller (MVC) Architecture (Continued)

MVC is popular as it isolates the application logic from the user interface layer and supports

separation of concerns. Here the Controller receives all requests for the application and then

works with the Model to prepare any data needed by the View. The View then uses the data

prepared by the Controller to generate a final presentable response. The MVC abstraction

can be graphically represented as shown in Fig1.

The Model

The model is responsible for managing the data of the application. It responds to the request

from the view and it also responds to instructions from the controller to update itself.

The View

It means presentation of data in a particular format, triggered by a controller's decision to

present the data. They are script-based templating systems like JSP, ASP, PHP and very

easy to integrate with AJAX technology.

The Controller

The controller is responsible for responding to the user input and perform interactions on the

data model objects. The controller receives the input, it validates the input and then performs

the business operation that modifies the state of the data model. Fig1.

Image Source: https://www.tutorialspoint.com/struts_2/images/struts-mvc.jpg

https://www.tutorialspoint.com/struts_2/images/struts-mvc.jpg

In this section, Let us work practically. Lets get your

hands dirty with code

© Edunet Foundation. All rights reserved.

● Installation of Django

● Creating the first project with Django

Installation of Django

● Creating environment for Django project

● Install latest version of python

● Check installed version

● Install pipenev

● Install visual studio code editor

● Install Django

● Create virtual environment

● Install django

Installation of Django

A) Install latest version of python

1. Download and install latest version of

python from the url

https://www.python.org/downloads/

B) Check for installed version of python

1. Press Window + R to open command

prompt

2. Type cmd in open box and press ok button

3. Command prompt will open

4. On command prompt type following

command, it will display the current python

version installed on your laptop

> python --version

Step 1) Creating environment for Django project (Continued)

https://www.python.org/downloads/

Step 1) Creating environment for Django project (Continued)

C) Install pipenev

> pip3 install pipenv

D) Install visual studio code editor

● Visit URI and download

https://code.visualstudio.com/

Step 1) Creating environment for Django project (Continued)

Step 2) Creating the first Project with django

A) Switch to Desktop

> cd Desktop

B) Create Project folder

> mkdir <<projectname_folder>>

> mkdir learndjango

Move to learndjango directory

>cd learndjango

Creating the first Project with django

C) Install django

>pipenv install django

Successfully created the virtual environment

Creating the first Project with django

C) Install django (Continued)

• Virtual environment location

is shown in above image

C:\Users\Hp\.virtualenvs\lear

ndjango-wvaKlYya

Creating the first Project with django

C)Install django (Continued)

• Activate python interpreter under this virtual environment
>pipenv shell

Creating the first Project with django

C) Install django (Continued)

• Run django-admin to start new project.

• django admin is utility comes along with django

>django-admin

Creating the first Project with django

D) start our project learndjango

> django-admin startproject <<project_name>>

> django-admin startproject learndjango

-It creates the two directories with the same name learndjango

-First directory learndjango is the project directory and second directory

learndjango is the django application directory

-delete the first directory learndjango and go to the command prompt

Creating the first Project with django

E) Go Back to the terminal and execute the command

> django-admin startproject learndjango .

It will use current directory as our project

directory .It will now not going to create the

additional directory.

Creating the first Project with django

F) Start webserver

• Start webserver - Run the command

>python manage.py runserver

It will start server at http://127.0.0.1:8000/

Creating the first Project with django

G) Load the landing page/welcome page of django

• Now open browser and type address

http://127.0.0.1:8000/ to open home page of our Django

project learndjango

Congratulation! You have installed and run the Django home page successfully.

Writing your first Django app: basic poll application

Throughout this tutorial section, we’ll walk you through the creation of a basic poll application.

It’ll consist of two parts:

A public site that lets people view polls and vote in them.

An admin site that lets you add, change, and delete polls.

We’ll assume you have Django installed already. You can tell Django is installed and which

version by running the following command in a command prompt

> python -m django --version

If Django is installed, you should see the version of your installation. If it isn’t, you’ll get an

error telling “No module named django”.

This tutorial is written for Django 4.0, which supports Python 3.8 and later.

Writing your first Django app: basic poll application

If this is your first time using Django, you’ll have to take care of some initial setup. Namely,

you’ll need to auto-generate some code that establishes a Django project – a collection of

settings for an instance of Django, including database configuration, Django-specific options

and application-specific settings.

From the command line, cd into a directory where you’d like to store your code, then run the

following command:

> django-admin startproject mysite

This will create a mysite directory in your current directory.

Creating your project

Writing your first Django app: basic poll application

Let’s look at what startproject created:

mysite/

manage.py

mysite/

__init__.py

settings.py

urls.py

asgi.py

wsgi.py

We will dicuss on these files in next slide.

Creating your project (Continued)

Writing your first Django app: basic poll application

Let us discuss on different files created by Django . These files are as follows:

The outer mysite/ root directory is a container for your project. Its name doesn’t matter to

Django; you can rename it to anything you like.

manage.py: A command-line utility that lets you interact with this Django project in various

ways. You can read all the details about manage.py in django-admin and manage.py.

The inner mysite/ directory is the actual Python package for your project. Its name is the

Python package name you’ll need to use to import anything inside it (e.g. mysite.urls).

mysite/__init__.py: An empty file that tells Python that this directory should be considered a

Python package.

Creating your project (Continued)

Writing your first Django app: basic poll application

Let us discuss on different files created by Django (Continued)

mysite/urls.py: The URL declarations for this Django project; a “table of contents” of your

Django-powered site. You can read more about URLs in URL dispatcher.

mysite/asgi.py: An entry-point for ASGI-compatible web servers to serve your project. See

How to deploy with ASGI for more details.

mysite/wsgi.py: An entry-point for WSGI-compatible web servers to serve your project. See

How to deploy with WSGI for more details.

Creating your project (Continued)

Writing your first Django app: basic poll application

● Let’s verify your Django project works. Change into the outer mysite directory, if you haven’t already,

and run the following commands:

>python manage.py runserver

• You’ll see the following output on the command line:

Performing system checks...

System check identified no issues (0 silenced).

You have unapplied migrations; your app may not work properly until they are applied.

Run 'python manage.py migrate' to apply them.

April 20, 2022 - 15:50:53

Django version 4.0, using settings 'mysite.settings'

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

• Ignore the warning about unapplied database migrations for now; we’ll deal with the database shortly.

The development server : Run the server

Writing your first Django app: basic poll application

By default, the runserver command starts the development server on the internal IP at port 8000.

If you want to change the server’s port, pass it as a command-line argument. For instance, this

command starts the server on port 8080:

>python manage.py runserver 8080

If you want to change the server’s IP, pass it along with the port. For example, to listen on all

available public IPs (which is useful if you are running Vagrant or want to show off your work on

other computers on the network), use:

>python manage.py runserver 0:8000

0 is a shortcut for 0.0.0.0.

Automatic reloading of runserver

The development server : Changing the port :

Writing your first Django app: basic poll application

The development server automatically reloads Python code

for each request as needed. You don’t need to restart the

server for code changes to take effect. However, some

actions like adding files don’t trigger a restart, so you’ll have to

restart the server in these cases.

The development server : Automatic reloading of runserver

Writing your first Django app: basic poll application

Projects vs. apps

What’s the difference between a project and an app? An

app is a web application that does something – e.g., a blog

system, a database of public records or a small poll app. A

project is a collection of configuration and apps for a

particular website. A project can contain multiple apps. An

app can be in multiple projects.

Creating the poll app

Writing your first Django app: basic poll application

Now that your environment – a “project” – is set up, you’re set to start doing work.

Each application you write in Django consists of a Python package that follows a certain

convention. Django comes with a utility that automatically generates the basic directory

structure of an app, so you can focus on writing code rather than creating directories.

Your apps can live anywhere on your Python path. In this tutorial, we’ll create our poll app in

the same directory as your manage.py file so that it can be imported as its own top-level

module, rather than a submodule of mysite.

To create your app, make sure you’re in the same directory as manage.py and type this

command:

>python manage.py startapp polls

Creating the poll app

Writing your first Django app: basic poll application

• Now that your environment – a “project” – is set up, you’re set to start doing work.

• That’ll create a directory polls, which is laid out like this:

polls/

__init__.py

admin.py

apps.py

migrations/

__init__.py

models.py

tests.py

views.py

This directory structure will house the poll application.

Creating the poll app

Writing your first Django app: basic poll application

• Now that your environment – a “project” – is set up, you’re set to start doing work.

• Let’s write the first view. Open the file polls/views.py and put the following Python code in it:

from django.http import HttpResponse

def index(request):

return HttpResponse("Hello, world. You're at the polls index.")

This is the simplest view possible in Django. To call the view, we need to map it to a URL -

and for this we need a URLconf.

Creating the poll app: Write your first view

Writing your first Django app: basic poll application

• To create a URLconf in the polls directory, create a file called urls.py. Your app directory

should now look like:

polls/

__init__.py

admin.py

apps.py

migrations/

__init__.py

models.py

tests.py

urls.py

views.py

Creating the poll app: Write your first view

Writing your first Django app: basic poll application

• In the polls/urls.py file include the following code:

from django.urls import path

from . import views

urlpatterns = [

path('', views.index, name='index'),

]

Creating the poll app: Write your first view

Writing your first Django app: basic poll application

• The next step is to point the root URLconf at the polls.urls module. In mysite/urls.py, add an import for

django.urls.include and insert an include() in the urlpatterns list, so you have:

from django.contrib import admin

from django.urls import include, path

urlpatterns = [

path('polls/', include('polls.urls')),

path('admin/', admin.site.urls),

]

• The include() function allows referencing other URLconfs. Whenever Django encounters include(), it

chops off whatever part of the URL matched up to that point and sends the remaining string to the

included URLconf for further processing.

Creating the poll app: Write your first view

Writing your first Django app: basic poll application

The idea behind include() is to make it easy to plug-and-play URLs. Since polls are in their

own URLconf (polls/urls.py), they can be placed under “/polls/”, or under “/fun_polls/”, or under

“/content/polls/”, or any other path root, and the app will still work

Note: When to use include()

You should always use include() when you include other URL patterns. admin.site.urls is the

only exception to this.

Creating the poll app: Write your first view

Writing your first Django app: basic poll application

You have now wired an index view into the URLconf. Verify it’s working with the following

command:

>python manage.py runserver

Go to http://localhost:8000/polls/ in your browser, and you should see the text “Hello, world.

You’re at the polls index.”, which you defined in the index view.

Creating the poll app: Write your first view

Disclaimer: The content is curated for educational purposes only.

© Edunet Foundation. All rights reserved.

Database

Let us add database into the poll app

Writing your first Django app: Part 2

We’ll set up the database, create your first model, and get a quick introduction to Django’s

automatically-generated admin site.

Migrating the database

Database setup

Now, open up mysite/settings.py. It’s a normal Python module with module-level variables

representing Django settings.

By default, the configuration uses SQLite. SQLite is included in Python, so you won’t need to

install anything else to support your database.

Writing your first Django app: Part 2

Migrating the database: Database setup (Continued)

If you wish to use another database, install the appropriate database bindings and change the

following keys in the DATABASES 'default' item to match your database connection settings:

ENGINE – Either 'django.db.backends.sqlite3', 'django.db.backends.postgresql',

'django.db.backends.mysql', or 'django.db.backends.oracle'. Other backends are also

available.

NAME – The name of your database. If you’re using SQLite, the database will be a file on your

computer; in that case, NAME should be the full absolute path, including filename, of that file.

The default value, BASE_DIR / 'db.sqlite3', will store the file in your project directory.

If you are not using SQLite as your database, additional settings such as USER, PASSWORD,

and HOST must be added.

Writing your first Django app: Part 2

Setup Timezone , INSTALLED_APPS

While you’re editing mysite/settings.py, set TIME_ZONE to your time zone.

Also, note the INSTALLED_APPS setting at the top of the file. That holds the names of all

Django applications that are activated in this Django instance. Apps can be used in multiple

projects, and you can package and distribute them for use by others in their projects.

By default, INSTALLED_APPS contains the following apps, all of which come with Django:

django.contrib.admin – The admin site. You’ll use it shortly.

django.contrib.auth – An authentication system.

django.contrib.contenttypes – A framework for content types.

django.contrib.sessions – A session framework.

django.contrib.messages – A messaging framework.

django.contrib.staticfiles – A framework for managing static files.

These applications are included by default as a convenience for the common case.

Writing your first Django app: Part 2

Setup Timezone , INSTALLED_APPS (Continued)

Some of these applications mentioned in previous slide make use of at least one database

table, though, so we need to create the tables in the database before we can use them. To do

that, run the following command:

>python manage.py migrate

The migrate command looks at the INSTALLED_APPS setting and creates any necessary

database tables according to the database settings in your mysite/settings.py file and the

database migrations shipped with the app

You’ll see a message for each migration it applies.

If you’re interested, run the command-line client for your database and type \dt (PostgreSQL),

SHOW TABLES; (MariaDB, MySQL), .tables (SQLite), or SELECT TABLE_NAME FROM

USER_TABLES; (Oracle) to display the tables Django created.

Writing your first Django app: Part 2

INSTALLED_APPS (Continued): Applying Migration

After Output after executing the command

> python manage.py migrate

Writing your first Django app: Part 2

Creating models

Now we’ll define your models – essentially, your database layout, with additional

metadata.

Overview-

A model is the single, definitive source of information about your data. It contains the

essential fields and behaviors of the data you’re storing. Django follows the DRY

Principle. The goal is to define your data model in one place and automatically

derive things from it.

This includes the migrations - unlike in Ruby On Rails, for example, migrations are

entirely derived from your models file, and are essentially a history that Django can

roll through to update your database schema to match your current models.

https://docs.djangoproject.com/en/4.0/misc/design-philosophies/
https://docs.djangoproject.com/en/4.0/misc/design-philosophies/

Writing your first Django app: Part 2

Creating models (Continued)

In our poll app, we’ll create two models: Question and Choice.

A Question has a question and a publication date.

A Choice has two fields: the text of the choice and a vote tally.

Each Choice is associated with a Question.

These concepts are represented by Python classes. Edit the polls/models.py file so it looks

like this:

Writing your first Django app: Part 2

Creating models (Continued)

• These concepts are represented by Python classes. Edit the polls/models.py file so it

looks like this:

from django.db import models

class Question(models.Model):

question_text = models.CharField(max_length=200)

pub_date = models.DateTimeField('date published')

class Choice(models.Model):

question = models.ForeignKey(Question, on_delete=models.CASCADE)

choice_text = models.CharField(max_length=200)

votes = models.IntegerField(default=0)

Writing your first Django app: Part 2

Models explanation :

Here, each model is represented by a class that subclasses django.db.models.Model. Each

model has a number of class variables, each of which represents a database field in the

model.

Each field is represented by an instance of a Field class – e.g., CharField for character fields

and DateTimeField for datetimes. This tells Django what type of data each field holds.

The name of each Field instance (e.g. question_text or pub_date) is the field’s name, in

machine-friendly format. You’ll use this value in your Python code, and your database will use

it as the column name.

You can use an optional first positional argument to a Field to designate a human-readable

name. That’s used in a couple of introspective parts of Django, and it doubles as

documentation. If this field isn’t provided, Django will use the machine-readable name. In this

example, we’ve only defined a human-readable name for Question.pub_date. For all other

fields in this model, the field’s machine-readable name will suffice as its human-readable

name.

Writing your first Django app: Part 2

Models explanation : (Continued)

Some Field classes have required arguments. Char Field, for example, requires that you give

it a max_length. That’s used not only in the database schema, but in validation, as we’ll soon

see.

A Field can also have various optional arguments; in this case, we’ve set the default value of

votes to 0.

Finally, note a relationship is defined, using Foreign Key. That tells Django each Choice is

related to a single Question. Django supports all the common database relationships: many-

to-one, many-to-many, and one-to-one.

Writing your first Django app: Part 2

Activating models-

That small bit of model code gives Django a lot of information. With it, Django is able to:

Create a database schema (CREATE TABLE statements) for this app.

Create a Python database-access API for accessing Question and Choice objects.

Writing your first Django app: Part 2

Activating models-

First we need to tell our project that the polls app is installed

To include the app in our project, we need to add a reference to its configuration class in the INSTALLED_APPS

setting. The PollsConfig class is in the polls/apps.py file, so its dotted path is 'polls.apps.PollsConfig'. Edit the

mysite/settings.py file and add that dotted path to the INSTALLED_APPS setting. It’ll look like this:

INSTALLED_APPS = [

'polls.apps.PollsConfig',

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

]

Writing your first Django app: Part 2

Activating models-

• Now Django knows to include the polls app. Let’s run another command:

>python manage.py makemigrations polls

• You should see something similar to the following:

Migrations for 'polls':

polls/migrations/0001_initial.py

- Create model Question

- Create model Choice

• By running makemigrations, you’re telling Django that you’ve made some changes to your models (in

this case, you’ve made new ones) and that you’d like the changes to be stored as a migration.

Writing your first Django app: Part 2

Activating models-

Migrations are how Django stores changes to your models (and thus your database schema) -

they’re files on disk. You can read the migration for your new model if you like; it’s the file

polls/migrations/0001_initial.py. Don’t worry, you’re not expected to read them every time

Django makes one, but they’re designed to be human-editable in case you want to manually

tweak how Django changes things.

There’s a command that will run the migrations for you and manage your database schema

automatically - that’s called migrate, and we’ll come to it in a moment - but first, let’s see what

SQL that migration would run. The sqlmigrate command takes migration names and returns

their SQL:

>python manage.py sqlmigrate polls 0001

Writing your first Django app: Part 2

Activating models-

You should see something similar to the following (we’ve reformatted it for readability):

BEGIN;

-- Create model Question

-CREATE TABLE "polls_question" (

"id" serial NOT NULL PRIMARY KEY,

"question_text" varchar(200) NOT NULL,

"pub_date" timestamp with time zone NOT NULL

);

-- Create model Choice

CREATE TABLE "polls_choice" (

"id" serial NOT NULL PRIMARY KEY,

"choice_text" varchar(200) NOT NULL,

"votes" integer NOT NULL,

"question_id" integer NOT NULL

);

Writing your first Django app: Part 2

Activating models- (Continued)

ALTER TABLE "polls_choice"

ADD CONSTRAINT "polls_choice_question_id_c5b4b260_fk_polls_question_id"

FOREIGN KEY ("question_id")

REFERENCES "polls_question" ("id")

DEFERRABLE INITIALLY DEFERRED;

CREATE INDEX "polls_choice_question_id_c5b4b260" ON "polls_choice" ("question_id");

COMMIT;

Writing your first Django app: Part 2

Activating models- (Continued)

Note the following:

The exact output will vary depending on the database you are using. The example above is generated for

PostgreSQL.

Table names are automatically generated by combining the name of the app (polls) and the lowercase name

of the model – question and choice. (You can override this behavior.)

Primary keys (IDs) are added automatically. (You can override this, too.)

By convention, Django appends "_id" to the foreign key field name. (Yes, you can override this, as well.)

The foreign key relationship is made explicit by a FOREIGN KEY constraint. Don’t worry about the

DEFERRABLE parts; it’s telling PostgreSQL to not enforce the foreign key until the end of the transaction.

It’s tailored to the database you’re using, so database-specific field types such as auto_increment (MySQL),

serial (PostgreSQL), or integer primary key autoincrement (SQLite) are handled for you automatically. Same

goes for the quoting of field names – e.g., using double quotes or single quotes.

The sqlmigrate command doesn’t actually run the migration on your database - instead, it prints it to the

screen so that you can see what SQL Django thinks is required. It’s useful for checking what Django is going

to do or if you have database administrators who require SQL scripts for changes.

Writing your first Django app: Part 2

Migrating the models

• Now, run migrate again to create those model tables in your database:

> python manage.py migrate

• It will show output like

perations to perform:

Apply all migrations: admin, auth, contenttypes, polls, sessions

Running migrations:

Rendering model states... DONE

Applying polls.0001_initial... OK

The migrate command takes all the migrations that haven’t been applied (Django tracks which ones are applied using a special

table in your database called django_migrations) and runs them against your database - essentially, synchronizing the

changes you made to your models with the schema in the database.

Migrations are very powerful and let you change your models over time, as you develop your project, without the need to

delete your database or tables and make new ones - it specializes in upgrading your database live, without losing data.

Writing your first Django app: Part 2

Playing with the API

Now, let’s hop into the interactive Python shell and play around with the free API Django gives

you. To invoke the Python shell, use this command:

>python manage.py shell

We’re using this instead of simply typing “python”, because manage.py sets the

DJANGO_SETTINGS_MODULE environment variable, which gives Django the Python import

path to your mysite/settings.py file.

Once you’re in the shell, explore the database API:

>>> from polls.models import Choice, Question # Import the model classes we just

wrote.

No questions are in the system yet.

>>> Question.objects.all()

<QuerySet []>

Writing your first Django app: Part 2

Playing with the API(Continued)

Once you’re in the shell, explore the database API:

Create a new Question.

Support for time zones is enabled in the default settings file, so

Django expects a datetime with tzinfo for pub_date. Use timezone.now()

instead of datetime.datetime.now() and it will do the right thing.

>>> from django.utils import timezone

>>> q = Question(question_text="What's new?", pub_date=timezone.now())

Save the object into the database. You have to call save() explicitly.

>>> q.save()

Now it has an ID.

>>> q.id

1

Writing your first Django app: Part 2

Playing with the API(Continued)

Once you’re in the shell, explore the database API:

Access model field values via Python attributes.

>>> q.question_text

"What's new?"

>>> q.pub_date

datetime.datetime(2012, 2, 26, 13, 0, 0, 775217, tzinfo=<UTC>)

Change values by changing the attributes, then calling save().

>>> q.question_text = "What's up?"

>>> q.save()

objects.all() displays all the questions in the database.

>>> Question.objects.all()

<QuerySet [<Question: Question object (1)>]>

To explore more click here

https://docs.djangoproject.com/en/4.0/intro/tutorial02/

Writing your first Django app: Part 2

Playing with the API(Continued)

• Wait a minute. <Question: Question object (1)> isn’t a helpful representation of this object. Let’s fix that by

editing the Question model (in the polls/models.py file) and adding a __str__() method to both Question

and Choice:

from django.db import models

class Question(models.Model):

...

def __str__(self):

return self.question_text

class Choice(models.Model):

...

def __str__(self):

return self.choice_text

Writing your first Django app: Part 2

Playing with the API(Continued)

• It’s important to add __str__() methods to your models, not only for your own convenience when dealing with the interactive

prompt, but also because objects’ representations are used throughout Django’s automatically-generated admin.

• Let’s also add a custom method to this model: polls/models.py –

import datetime

from django.db import models

from django.utils import timezone

class Question(models.Model):

...

def was_published_recently(self):

return self.pub_date >= timezone.now() - datetime.timedelta(days=1)

Writing your first Django app: Part 2

Playing with the API(Continued)

• Note the addition of import datetime and from django.utils import timezone, to reference Python’s standard

datetime module and Django’s time-zone-related utilities in django.utils.timezone, respectively. If you

aren’t familiar with time zone handling in Python, you can learn more in the time zone support docs.

• Save these changes and start a new Python interactive shell by running python manage.py shell again:

>>> from polls.models import Choice, Question

Make sure our __str__() addition worked.

>>> Question.objects.all()

<QuerySet [<Question: What's up?>]>

Django provides a rich database lookup API that's entirely driven by

keyword arguments.

Writing your first Django app: Part 2

Playing with the API(Continued)

• Save these changes and start a new Python interactive shell by running python manage.py shell again:

keyword arguments.

>>> Question.objects.filter(id=1)

<QuerySet [<Question: What's up?>]>

>>> Question.objects.filter(question_text__startswith='What')

<QuerySet [<Question: What's up?>]>

Get the question that was published this year.

>>> from django.utils import timezone

>>> current_year = timezone.now().year

>>> Question.objects.get(pub_date__year=current_year)

<Question: What's up?>

Writing your first Django app: Part 2

Playing with the API(Continued)

• Save these changes and start a new Python interactive shell by running python manage.py shell again:

Make sure our custom method worked.

>>> q = Question.objects.get(pk=1)

>>> q.was_published_recently()

True

Give the Question a couple of Choices. The create call constructs a new

Choice object, does the INSERT statement, adds the choice to the set

of available choices and returns the new Choice object. Django creates

a set to hold the "other side" of a ForeignKey relation

(e.g. a question's choice) which can be accessed via the API.

>>> q = Question.objects.get(pk=1)

Writing your first Django app: Part 2

Playing with the API(Continued)

• Save these changes and start a new Python interactive shell by running python manage.py shell again:

Display any choices from the related object set -- none so far.

>>> q.choice_set.all()

<QuerySet []>

Create three choices.

>>> q.choice_set.create(choice_text='Not much', votes=0)

<Choice: Not much>

>>> q.choice_set.create(choice_text='The sky', votes=0)

<Choice: The sky>

>>> c = q.choice_set.create(choice_text='Just hacking again', votes=0)

Writing your first Django app: Part 2

Playing with the API(Continued)

• Save these changes and start a new Python interactive shell by running python manage.py shell again:

Choice objects have API access to their related Question objects.

>>> c.question

<Question: What's up?>

And vice versa: Question objects get access to Choice objects.

>>> q.choice_set.all()

<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>

>>> q.choice_set.count()

3

Writing your first Django app: Part 2

Playing with the API(Continued)

• Save these changes and start a new Python interactive shell by running python manage.py shell again:

The API automatically follows relationships as far as you need.

Use double underscores to separate relationships.

This works as many levels deep as you want; there's no limit.

Find all Choices for any question whose pub_date is in this year

(reusing the 'current_year' variable we created above).

>>> Choice.objects.filter(question__pub_date__year=current_year)

<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>

Let's delete one of the choices. Use delete() for that.

>>> c = q.choice_set.filter(choice_text__startswith='Just hacking')

>>> c.delete()

Disclaimer: The content is curated for educational purposes only.

© Edunet Foundation. All rights reserved.

Django Admin

Introducing the Django Admin

Overview:

• Generating admin sites for your staff or clients to add, change, and delete content is tedious work that

doesn’t require much creativity. For that reason, Django entirely automates creation of admin interfaces

for models.

• The admin isn’t intended to be used by site visitors. It’s for site managers.

Creating an admin user-

• First we’ll need to create a user who can login to the admin site. Run the following command:

>python manage.py createsuperuser

Enter your desired username and press enter.

Username: admin

You will then be prompted for your desired email address:

Introducing the Django Admin

Creating an admin user-(Continued)

Email address: admin@example.com

The final step is to enter your password. You will be asked to enter your password twice, the second time as

a confirmation of the first.

Password: **********

Password (again): *********

Superuser created successfully.

Introducing the Django Admin

• Start the development server

• The Django admin site is activated by default. Let’s start the development server and explore it.

• If the server is not running start it like so:

>python manage.py runserver

• Now, open a web browser and go to “/admin/” on your local domain – e.g., http://127.0.0.1:8000/admin/.

You should see the admin’s login screen:

• Since translation is turned on by default, if you set LANGUAGE_CODE, the login screen will be displayed

in the given language (if Django has appropriate translations).

Introducing the Django Admin

• Enter the admin site:

• Now, try logging in with the superuser account you created in the previous step. You should see the

Django admin index page:

• You should see a few types of editable content: groups and users. They are provided by

django.contrib.auth, the authentication framework shipped by Django.

Introducing the Django Admin

Make the poll app modifiable in the admin:

• But where’s our poll app? It’s not displayed on the admin index page.

• Only one more thing to do: we need to tell the admin that Question objects have an admin interface. To do this, open the

polls/admin.py file, and edit it to look like this:

from django.contrib import admin

from .models import Question

admin.site.register(Question)

Introducing the Django Admin

• Explore the free admin functionality

• Now that we’ve registered Question, Django knows that it should be displayed on the admin index page:

• Click “Questions”. Now you’re at the “change list” page for questions.

Introducing the Django Admin

• Explore the free admin functionality

• This page displays all the questions in the database and lets you choose one to change it. There’s the

“What’s up?” question we created earlier:

• Click the “What’s up?” question to edit it:

Introducing the Django Admin

• Explore the free admin functionality

• Edit question :

Introducing the Django Admin

• Things to note here:

• The form is automatically generated from the Question model.

• The different model field types (DateTimeField, CharField) correspond to the appropriate

HTML input widget. Each type of field knows how to display itself in the Django admin.

• Each DateTimeField gets free JavaScript shortcuts. Dates get a “Today” shortcut and

calendar popup, and times get a “Now” shortcut and a convenient popup that lists commonly

entered times.

Introducing the Django Admin

• things to note here (Continued)-

• The bottom part of the page gives you a couple of options:

• Save – Saves changes and returns to the change-list page for this type of object.

• Save and continue editing – Saves changes and reloads the admin page for this object.

• Save and add another – Saves changes and loads a new, blank form for this type of object.

• Delete – Displays a delete confirmation page.

Disclaimer: The content is curated for educational purposes only.

© Edunet Foundation. All rights reserved.

Views and URL mapping, HttpRequest &

HttpResponse,

GET & POST Method

Views

• A view function, or view for short, is a

Python function that takes a web request

and returns a web response.

• This response can be the HTML contents of

a web page, or a redirect, or a 404 error, or

an XML document, or an image , or

anything that a web browser can display.

• The convention is to put views in a file

called views.py file in your project or

application directory.

Image Source: https://media.geeksforgeeks.org/wp-

content/uploads/20200124153519/django-views.jpg

https://media.geeksforgeeks.org/wp-content/uploads/20200124153519/django-views.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20200124153519/django-views.jpg

Creating simple View : Example

Here’s a view that returns the current date and time, as an HTML document: learndjango/

views.py

import Http Response from django

from django.http import HttpResponse

get datetime

import datetime

create a function

def date_view(request):

fetch date and time

now = datetime.datetime.now()

convert to string

html = "Time is {}".format(now)

return response

return HttpResponse(html)

Creating simple View: Example Explanation

• •First, we import the class HttpResponse from the django.http module, along with

Python’s datetime library.

• Next, we define a function called date_view. This is the view function. Each view

function takes an HttpRequest object as its first parameter, which is typically named

request.

• The view returns an HttpResponse object that contains the generated response. Each

view function is responsible for returning an HttpResponse object.

URL Mapping : Example

Let’s get this view to working, in learndjango/urls.py

from django.contrib import admin

from django.urls import path,include

from .views import date_view

urlpatterns = [

#path('admin/', admin.site.urls),

path('', date_view),

]

Output for DateTime example

• • Now, visit http://127.0.0.1:8000/

http://127.0.0.1:8000/

Disclaimer: The content is curated for educational purposes only.

© Edunet Foundation. All rights reserved.

HttpRequest & HttpResponse,

HttpRequest & HttpResponse

Request and response objects : Overview

• Django uses request and response objects to pass state through the system.

• When a page is requested, Django creates an HttpRequest object that contains

metadata about the request. Then Django loads the appropriate view, passing the

HttpRequest as the first argument to the view function. Each view is responsible for

returning an HttpResponse object.

HttpRequest

HttpRequest objects

• class HttpRequest

• Attributes

• All attributes should be considered read-only, unless stated otherwise.

• HttpRequest.scheme

• A string representing the scheme of the request (http or https usually).

HttpRequest

HttpRequest objects (Continued)

HttpRequest.body

The raw HTTP request body as a bytestring. This is useful for processing data in

different ways than conventional HTML forms: binary images, XML payload etc. For

processing conventional form data, use HttpRequest.POST.

You can also read from an HttpRequest using a file-like interface with

HttpRequest.read() or HttpRequest.readline(). Accessing the body attribute after

reading the request with either of these I/O stream methods will produce a

RawPostDataException.

HttpRequest.path

A string representing the full path to the requested page, not including the scheme,

domain, or query string.

Example: "/music/bands/the_beatles/"

HttpRequest

HttpRequest objects (Continued)

HttpRequest.path_info

Under some web server configurations, the portion of the URL after the host name is

split up into a script prefix portion and a path info portion. The path_info attribute

always contains the path info portion of the path, no matter what web server is being

used. Using this instead of path can make your code easier to move between test and

deployment servers.

For example, if the WSGIScriptAlias for your application is set to "/minfo", then path

might be "/minfo/music/bands/the_beatles/" and path_info would be

"/music/bands/the_beatles/".

HttpRequest

HttpRequest objects (Continued)

HttpRequest.method

A string representing the HTTP method used in the request. This is guaranteed to be

uppercase. For example:

if request.method == 'GET':
do_something()

elif request.method == 'POST':
do_something_else()

HttpRequest

HttpRequest objects (Continued)

HttpRequest.encoding

A string representing the current encoding used to decode form submission data (or

None, which means the DEFAULT_CHARSET setting is used). You can write to this

attribute to change the encoding used when accessing the form data. Any subsequent

attribute accesses (such as reading from GET or POST) will use the new encoding

value. Useful if you know the form data is not in the DEFAULT_CHARSET encoding.

HttpRequest.content_type

A string representing the MIME type of the request, parsed from the CONTENT_TYPE

header.

HttpRequest

HttpRequest objects (Continued)

HttpRequest.POST

A dictionary-like object containing all given HTTP POST parameters, providing that the

request contains form data. See the QueryDict documentation below. If you need to

access raw or non-form data posted in the request, access this through the

HttpRequest.body attribute instead.

It’s possible that a request can come in via POST with an empty POST dictionary – if,

say, a form is requested via the POST HTTP method but does not include form data.

Therefore, you shouldn’t use if request.POST to check for use of the POST method;

instead, use if request.method == "POST" (see HttpRequest.method).

POST does not include file-upload information. See FILES.

HttpRequest

HttpRequest objects (Continued)

HttpRequest.content_params

A dictionary of key/value parameters included in the CONTENT_TYPE header.

HttpRequest.GET

A dictionary-like object containing all given HTTP GET parameters. See the QueryDict

documentation below.

HttpRequest.COOKIES

A dictionary containing all cookies. Keys and values are strings.

HttpRequest

HttpRequest objects (Continued)

HttpRequest.FILES

A dictionary-like object containing all uploaded files. Each key in FILES is the name

from the <input type="file" name="">. Each value in FILES is an UploadedFile.

See Managing files for more information.

FILES will only contain data if the request method was POST and the <form> that

posted to the request had enctype="multipart/form-data". Otherwise, FILES will be a

blank dictionary-like object.

HttpRequest

HttpRequest objects (Continued)

HttpRequest.META

A dictionary containing all available HTTP headers. Available headers depend on the client and

server, but here are some examples:

CONTENT_LENGTH – The length of the request body (as a string).

CONTENT_TYPE – The MIME type of the request body.

HTTP_ACCEPT – Acceptable content types for the response.

HTTP_ACCEPT_ENCODING – Acceptable encodings for the response.

HTTP_ACCEPT_LANGUAGE – Acceptable languages for the response.

HTTP_HOST – The HTTP Host header sent by the client.

HTTP_REFERER – The referring page, if any.

HTTP_USER_AGENT – The client’s user-agent string.

QUERY_STRING – The query string, as a single (unparsed) string.

REMOTE_ADDR – The IP address of the client.

REMOTE_HOST – The hostname of the client.

REMOTE_USER – The user authenticated by the web server, if any.

REQUEST_METHOD – A string such as "GET" or "POST".

SERVER_NAME – The hostname of the server.

SERVER_PORT – The port of the server (as a string).

HttpRequest

HttpRequest objects (Continued)

HttpRequest.headers

A case insensitive, dict-like object that provides access to all HTTP-prefixed headers

(plus Content-Length and Content-Type) from the request.

HttpRequest.resolver_match

An instance of ResolverMatch representing the resolved URL. This attribute is only set

after URL resolving took place, which means it’s available in all views but not in

middleware which are executed before URL resolving takes place (you can use it in

process_view() though).

HttpRequest

HttpRequest objects : Attributes set by application code

Django doesn’t set these attributes itself but makes use of them if set by your

application.

HttpRequest.current_app

The url template tag will use its value as the current_app argument to reverse().

HttpRequest.urlconf

This will be used as the root URLconf for the current request, overriding the

ROOT_URLCONF setting. See How Django processes a request for details.

urlconf can be set to None to revert any changes made by previous middleware and

return to using the ROOT_URLCONF.

HttpRequest

HttpRequest objects : Attributes set by application code (Continued)

HttpRequest.exception_reporter_filter

This will be used instead of DEFAULT_EXCEPTION_REPORTER_FILTER for the

current request. See Custom error reports for details.

HttpRequest.exception_reporter_class

This will be used instead of DEFAULT_EXCEPTION_REPORTER for the current

request. See Custom error reports for details.

HttpRequest

HttpRequest objects :Methods

HttpRequest.get_host()

Returns the originating host of the request using information from the

HTTP_X_FORWARDED_HOST (if USE_X_FORWARDED_HOST is enabled) and

HTTP_HOST headers, in that order. If they don’t provide a value, the method uses a

combination of SERVER_NAME and SERVER_PORT as detailed in PEP 3333.

Example: "127.0.0.1:8000“

HttpRequest.get_port()

Returns the originating port of the request using information from the

HTTP_X_FORWARDED_PORT (if USE_X_FORWARDED_PORT is enabled) and

SERVER_PORT META variables, in that order.

HttpRequest

HttpRequest objects :Methods (Continued)

HttpRequest.get_full_path()

Returns the path, plus an appended query string, if applicable.

Example: "/music/bands/the_beatles/?print=true"

HttpRequest.get_full_path_info()

Like get_full_path(), but uses path_info instead of path.

Example: "/minfo/music/bands/the_beatles/?print=true"

HttpRequest

HttpRequest objects :Methods (Continued)

HttpRequest.build_absolute_uri(location=None)

Returns the absolute URI form of location. If no location is provided, the location will be

set to request.get_full_path().

If the location is already an absolute URI, it will not be altered. Otherwise the absolute

URI is built using the server variables available in this request.

HttpRequest

HttpRequest objects :Methods (Continued)

HttpRequest.get_signed_cookie(key, default=RAISE_ERROR, salt='',

max_age=None)

Returns a cookie value for a signed cookie, or raises a

django.core.signing.BadSignature exception if the signature is no longer valid. If you

provide the default argument the exception will be suppressed and that default value

will be returned instead.

The optional salt argument can be used to provide extra protection against brute force

attacks on your secret key. If supplied, the max_age argument will be checked against

the signed timestamp attached to the cookie value to ensure the cookie is not older

than max_age seconds.

HttpRequest

HttpRequest objects :Methods (Continued)

HttpRequest.is_secure()

Returns True if the request is secure; that is, if it was made with HTTPS.

HttpRequest.accepts(mime_type)

Returns True if the request Accept header matches the mime_type argument

HttpResponse

HttpResponse objects

class HttpResponse

In contrast to HttpRequest objects, which are created automatically by Django,

HttpResponse objects are your responsibility. Each view you write is responsible for

instantiating, populating, and returning an HttpResponse.

The HttpResponse class lives in the django.http module.

HttpResponse

HttpResponse objects

Usage

Passing strings

Typical usage is to pass the contents of the page, as a string, bytestring, or

memoryview, to the HttpResponse constructor:

>>> from django.http import HttpResponse

>>> response = HttpResponse("Here's the text of the web page.")

But if you want to add content incrementally, you can use response as a file-like object:

>>> response = HttpResponse()

>>> response.write("<p>Here's the text of the web page.</p>")

HttpResponse

HttpResponse objects

Usage

Passing iterators

Finally, you can pass HttpResponse an iterator rather than strings. HttpResponse will

consume the iterator immediately, store its content as a string, and discard it. Objects

with a close() method such as files and generators are immediately closed.

If you need the response to be streamed from the iterator to the client, you must use

the StreamingHttpResponse class instead.

HttpResponse

HttpResponse objects

Setting header fields

To set or remove a header field in your response, use HttpResponse.headers:

>>> response = HttpResponse()

>>> response.headers['Age'] = 120

>>> del response.headers['Age’]

You can also manipulate headers by treating your response like a dictionary:

>>> response = HttpResponse()

>>> response['Age'] = 120

>>> del response['Age’]

This proxies to HttpResponse.headers, and is the original interface offered by

HttpResponse.

HttpResponse

HttpResponse objects

Setting header fields (continued)

When using this interface, unlike a dictionary, del doesn’t raise KeyError if the header

field doesn’t exist.

You can also set headers on instantiation:

>>> response = HttpResponse(headers={'Age': 120})

HttpResponse

HttpResponse objects

Telling the browser to treat the response as a file attachment

To tell the browser to treat the response as a file attachment, set the Content-Type and

Content-Disposition headers. For example, this is how you might return a Microsoft

Excel spreadsheet:

>>> response = HttpResponse(my_data, headers={

... 'Content-Type': 'application/vnd.ms-excel',

... 'Content-Disposition': 'attachment; filename="foo.xls"',

... })

HttpResponse

HttpResponse objects : Attributes

HttpResponse.content

A bytestring representing the content, encoded from a string if necessary.

HttpResponse.headers

New in Django 3.2.

A case insensitive, dict-like object that provides an interface to all HTTP headers on the

response. See Setting header fields.

HttpResponse.charset

A string denoting the charset in which the response will be encoded. If not given at

HttpResponse instantiation time, it will be extracted from content_type and if that is

unsuccessful, the DEFAULT_CHARSET setting will be used.

HttpResponse

HttpResponse objects : Attributes

HttpResponse.status_code

The HTTP status code for the response.

HttpResponse.reason_phrase

The HTTP reason phrase for the response. It uses the HTTP standard’s default reason

phrases.

HttpResponse.streaming

This is always False.

HttpResponse.closed

True if the response has been closed.

HttpResponse

HttpResponse objects : Attributes

HttpResponse.__setitem__(header, value)

Sets the given header name to the given value. Both header and value should be

strings.

HttpResponse.__delitem__(header)

Deletes the header with the given name. Fails silently if the header doesn’t exist. Case-

insensitive.

HttpResponse.__getitem__(header)

Returns the value for the given header name. Case-insensitive.

HttpResponse.get(header, alternate=None)

Returns the value for the given header, or an alternate if the header doesn’t exist.

HttpResponse

HttpResponse objects : Attributes

HttpResponse.has_header(header)

Returns True or False based on a case-insensitive check for a header with the given

name.

HttpResponse.items()

Acts like dict.items() for HTTP headers on the response.

HttpResponse.setdefault(header, value)

Sets a header unless it has already been set.

HttpResponse

HttpResponse objects : Attributes

HttpResponse.set_cookie(key, value='', max_age=None, expires=None, path='/', domain=None,

secure=False, httponly=False, samesite=None)¶

Sets a cookie.

max_age should be an integer number of seconds, or None (default) if the cookie should last only as long as the

client’s browser session. If expires is not specified, it will be calculated.

expires should either be a string in the format "Wdy, DD-Mon-YY HH:MM:SS GMT" or a datetime.datetime object in

UTC. If expires is a datetime object, the max_age will be calculated.

Use domain if you want to set a cross-domain cookie. For example, domain="example.com" will set a cookie that is

readable by the domains www.example.com, blog.example.com, etc. Otherwise, a cookie will only be readable by

the domain that set it.

Use secure=True if you want the cookie to be only sent to the server when a request is made with the https scheme.

Use httponly=True if you want to prevent client-side JavaScript from having access to the cookie.

HttpOnly is a flag included in a Set-Cookie HTTP response header. It’s part of the RFC 6265 standard for cookies

and can be a useful way to mitigate the risk of a client-side script accessing the protected cookie data.

Use samesite='Strict' or samesite='Lax' to tell the browser not to send this cookie when performing a cross-origin

request. SameSite isn’t supported by all browsers, so it’s not a replacement for Django’s CSRF protection, but rather

a defense in depth measure.

HttpResponse

HttpResponse objects : Methods
HttpResponse.__init__(content=b'', content_type=None, status=200, reason=None, charset=None,

headers=None)

Instantiates an HttpResponse object with the given page content, content type, and headers.

content is most commonly an iterator, bytestring, memoryview, or string. Other types will be converted to a bytestring

by encoding their string representation. Iterators should return strings or bytestrings and those will be joined together

to form the content of the response.

content_type is the MIME type optionally completed by a character set encoding and is used to fill the HTTP

Content-Type header. If not specified, it is formed by 'text/html' and the DEFAULT_CHARSET settings, by default:

"text/html; charset=utf-8".

status is the HTTP status code for the response. You can use Python’s http.HTTPStatus for meaningful aliases,

such as HTTPStatus.NO_CONTENT.

reason is the HTTP response phrase. If not provided, a default phrase will be used. charset is the charset in which

the response will be encoded. If not given it will be extracted from content_type, and if that is unsuccessful, the

DEFAULT_CHARSET setting will be used.headers is a dict of HTTP headers for the response.TTP status code for

the response.

HttpResponse

HttpResponse objects : Attributes

HttpResponse.delete_cookie(key, path='/', domain=None, samesite=None)

Deletes the cookie with the given key. Fails silently if the key doesn’t exist.

Due to the way cookies work, path and domain should be the same values you used in

set_cookie() – otherwise the cookie may not be deleted.

HttpResponse.close()

This method is called at the end of the request directly by the WSGI server.

HttpResponse.write(content)

This method makes an HttpResponse instance a file-like object.

HttpResponse.flush()

This method makes an HttpResponse instance a file-like object.

HttpResponse

HttpResponse objects : Attributes

HttpResponse.tell()

This method makes an HttpResponse instance a file-like object.

HttpResponse.getvalue()

Returns the value of HttpResponse.content. This method makes an HttpResponse

instance a stream-like object.

HttpResponse.readable()

Always False. This method makes an HttpResponse instance a stream-like object.

HttpResponse.seekable()

Always False. This method makes an HttpResponse instance a stream-like object.

HttpResponse.writable()

Always True. This method makes an HttpResponse instance a stream-like object.

HttpResponse

HttpResponse subclasses

Django includes a number of HttpResponse subclasses that handle different types of

HTTP responses. Like HttpResponse, these subclasses live in django.http.

class HttpResponseRedirect

The first argument to the constructor is required – the path to redirect to. This can be a

fully qualified URL (e.g. 'https://www.yahoo.com/search/'), an absolute path with no

domain (e.g. '/search/'), or even a relative path (e.g. 'search/'). In that last case, the

client browser will reconstruct the full URL itself according to the current path. See

HttpResponse for other optional constructor arguments. Note that this returns an HTTP

status code 302.

url

This read-only attribute represents the URL the response will redirect to (equivalent to

the Location response header).

HttpResponse

HttpResponse subclasses

class HttpResponsePermanentRedirect

Like HttpResponseRedirect, but it returns a permanent redirect (HTTP status code

301) instead of a “found” redirect (status code 302).

class HttpResponseNotModified

The constructor doesn’t take any arguments and no content should be added to this

response. Use this to designate that a page hasn’t been modified since the user’s last

request (status code 304).

class HttpResponseBadRequest

Acts just like HttpResponse but uses a 400 status code.

HttpResponse

HttpResponse subclasses

class HttpResponseNotFound

Acts just like HttpResponse but uses a 404 status code.

class HttpResponseForbidden

Acts just like HttpResponse but uses a 403 status code.

class HttpResponseNotAllowed

Like HttpResponse, but uses a 405 status code. The first argument to the constructor is

required: a list of permitted methods (e.g. ['GET', 'POST']).

HttpResponse

HttpResponse subclasses

class HttpResponseGone

Acts just like HttpResponse but uses a 410 status code.

class HttpResponseServerError

Acts just like HttpResponse but uses a 500 status code.

Disclaimer: The content is curated for educational purposes only.

© Edunet Foundation. All rights reserved.

GET & POST Method

Get and Post Method

GET and POST

Django’s login form is returned using the POST method, in which the browser bundles

up the form data, encodes it for transmission, sends it to the server, and then receives

back its response.

GET, by contrast, bundles the submitted data into a string, and uses this to compose a

URL. The URL contains the address where the data must be sent, as well as the data

keys and values. You can see this in action if you do a search in the Django

documentation, which will produce a URL of the form

https://docs.djangoproject.com/search/?q=forms&release=1.

GET and POST are typically used for different purposes.

https://docs.djangoproject.com/search/?q=forms&release=1

Get and Post Method

GET and POST

Any request that could be used to change the state of the system - for example, a

request that makes changes in the database - should use POST. GET should be used

only for requests that do not affect the state of the system.

GET would also be unsuitable for a password form, because the password would

appear in the URL, and thus, also in browser history and server logs, all in plain text.

Neither would it be suitable for large quantities of data, or for binary data, such as an

image. A web application that uses GET requests for admin forms is a security risk: it

can be easy for an attacker to mimic a form’s request to gain access to sensitive parts

of the system. POST, coupled with other protections like Django’s CSRF protection

offers more control over access.

Get and Post Method

HTML Form

In HTML, a form is a collection of elements inside <form>...</form> that allow a visitor

to do things like enter text, select options, manipulate objects or controls, and so on,

and then send that information back to the server.

Some of these form interface elements - text input or checkboxes - are built into HTML

itself. Others are much more complex; an interface that pops up a date picker or allows

you to move a slider or manipulate controls will typically use JavaScript and CSS as

well as HTML form <input> elements to achieve these effects.

As well as its <input> elements, a form must specify two things:

where: the URL to which the data corresponding to the user’s input should be returned

how: the HTTP method the data should be returned by

Get and Post Method

HTML Form (Continued)

As an example, the login form for the Django admin contains several <input> elements:

one of type="text" for the username, one of type="password" for the password, and one

of type="submit" for the “Log in” button. It also contains some hidden text fields that the

user doesn’t see, which Django uses to determine what to do next.

It also tells the browser that the form data should be sent to the URL specified in the

<form>’s action attribute - /admin/ - and that it should be sent using the HTTP

mechanism specified by the method attribute - post.

When the <input type="submit" value="Log in"> element is triggered, the data is

returned to /admin/.

Get and Post Method

Django’s role in forms

Handling forms is a complex business. Consider Django’s admin, where numerous items of data of

several different types may need to be prepared for display in a form, rendered as HTML, edited

using a convenient interface, returned to the server, validated and cleaned up, and then saved or

passed on for further processing.

Django’s form functionality can simplify and automate vast portions of this work, and can also do it

more securely than most programmers would be able to do in code they wrote themselves.

Django handles three distinct parts of the work involved in forms:

preparing and restructuring data to make it ready for rendering

creating HTML forms for the data

receiving and processing submitted forms and data from the client

It is possible to write code that does all of this manually, but Django can take care of it all for you.

Get and Post Method

Forms in Django-

We’ve described HTML forms briefly, but an HTML <form> is just one part of the

machinery required.

In the context of a web application, ‘form’ might refer to that HTML <form>, or to the

Django Form that produces it, or to the structured data returned when it is submitted, or

to the end-to-end working collection of these parts.

Get and Post Method

The Django Form class

At the heart of this system of components is Django’s Form class. In much the same way that a

Django model describes the logical structure of an object, its behavior, and the way its parts are

represented to us, a Form class describes a form and determines how it works and appears.

In a similar way that a model class’s fields map to database fields, a form class’s fields map to

HTML form <input> elements. (A ModelForm maps a model class’s fields to HTML form <input>

elements via a Form; this is what the Django admin is based upon.)

A form’s fields are themselves classes; they manage form data and perform validation when a form

is submitted. A DateField and a FileField handle very different kinds of data and have to do different

things with it.

A form field is represented to a user in the browser as an HTML “widget” - a piece of user interface

machinery. Each field type has an appropriate default Widget class, but these can be overridden as

required.

Get and Post Method

Instantiating, processing, and rendering forms

When rendering an object in Django, we generally:

get hold of it in the view (fetch it from the database, for example)

pass it to the template context

expand it to HTML markup using template variables

Rendering a form in a template involves nearly the same work as rendering any other kind of object,

but there are some key differences.

In the case of a model instance that contained no data, it would rarely if ever be useful to do

anything with it in a template. On the other hand, it makes perfect sense to render an unpopulated

form - that’s what we do when we want the user to populate it.

So when we handle a model instance in a view, we typically retrieve it from the database. When

we’re dealing with a form we typically instantiate it in the view.

Get and Post Method

Instantiating, processing, and rendering forms (Continued)

When we instantiate a form, we can opt to leave it empty or pre-populate it, for

example with:

data from a saved model instance (as in the case of admin forms for editing)

data that we have collated from other sources

data received from a previous HTML form submission

The last of these cases is the most interesting, because it’s what makes it possible for

users not just to read a website, but to send information back to it too.

Get and Post Method

Building a form

The work that needs to be done

Suppose you want to create a simple form on your website, in order to obtain the user’s

name. You’d need something like this in your template:

<form action="/your-name/" method="post">

<label for="your_name">Your name: </label>

<input id="your_name" type="text" name="your_name" value="{{ current_name }}">

<input type="submit" value="OK">

</form>

This tells the browser to return the form data to the URL /your-name/, using the POST

method. It will display a text field, labeled “Your name:”, and a button marked “OK”. If

the template context contains a current_name variable, that will be used to pre-fill the

your_name field.

Get and Post Method

Building a form (Continued)

You’ll need a view that renders the template containing the HTML form, and that can

supply the current_name field as appropriate.

When the form is submitted, the POST request which is sent to the server will contain

the form data.

Now you’ll also need a view corresponding to that /your-name/ URL which will find the

appropriate key/value pairs in the request, and then process them.

This is a very simple form. In practice, a form might contain dozens or hundreds of

fields, many of which might need to be pre-populated, and we might expect the user to

work through the edit-submit cycle several times before concluding the operation.

We might require some validation to occur in the browser, even before the form is

submitted; we might want to use much more complex fields, that allow the user to do

things like pick dates from a calendar and so on.

At this point it’s much easier to get Django to do most of this work for us.

Get and Post Method

Building a form in Django

The Form class

We already know what we want our HTML form to look like. Our starting point for it in

Django is this:

forms.py

from django import forms

class NameForm(forms.Form):

your_name = forms.CharField(label='Your name', max_length=100)

This defines a Form class with a single field (your_name). We’ve applied a human-

friendly label to the field, which will appear in the <label> when it’s rendered (although

in this case, the label we specified is actually the same one that would be generated

automatically if we had omitted it).

Get and Post Method

Building a form in Django (Continued)

The field’s maximum allowable length is defined by max_length. This does two things. It puts a

maxlength="100" on the HTML <input> (so the browser should prevent the user from entering

more than that number of characters in the first place). It also means that when Django receives the

form back from the browser, it will validate the length of the data.

A Form instance has an is_valid() method, which runs validation routines for all its fields. When this

method is called, if all fields contain valid data, it will:

• return True

• place the form’s data in its cleaned_data attribute.

The whole form, when rendered for the first time, will look like:

<label for="your_name">Your name: </label>

<input id="your_name" type="text" name="your_name" maxlength="100" required>

Note that it does not include the <form> tags, or a submit button. We’ll have to provide those

ourselves in the template.

Get and Post Method

Building a form in Django (Continued) : The view

Form data sent back to a Django website is processed by a view, generally the same view

which published the form. This allows us to reuse some of the same logic.

To handle the form we need to instantiate it in the view for the URL where we want it to be

published:
from django.http import HttpResponseRedirect

from django.shortcuts import render

from .forms import NameForm

def get_name(request):

if this is a POST request we need to process the form data

if request.method == 'POST':

create a form instance and populate it with data from the request:

form = NameForm(request.POST)

check whether it's valid:

if form.is_valid():

process the data in form.cleaned_data as required

...

redirect to a new URL:

return HttpResponseRedirect('/thanks/')

if a GET (or any other method) we'll create a blank form

else:

form = NameForm()

return render(request, 'name.html', {'form': form})

Get and Post Method

Building a form in Django : The view (Continued)

If we arrive at this view with a GET request, it will create an empty form instance and place it in the

template context to be rendered. This is what we can expect to happen the first time we visit the

URL.

If the form is submitted using a POST request, the view will once again create a form instance and

populate it with data from the request: form = NameForm(request.POST) This is called “binding

data to the form” (it is now a bound form).

We call the form’s is_valid() method; if it’s not True, we go back to the template with the form. This

time the form is no longer empty (unbound) so the HTML form will be populated with the data

previously submitted, where it can be edited and corrected as required.

If is_valid() is True, we’ll now be able to find all the validated form data in its cleaned_data attribute.

We can use this data to update the database or do other processing before sending an HTTP

redirect to the browser telling it where to go next.

Get and Post Method

Building a form in Django (Continued) : The template

We don’t need to do much in our name.html template:

<form action="/your-name/" method="post">

{% csrf_token %}

{{ form }}

<input type="submit" value="Submit">

</form>

All the form’s fields and their attributes will be unpacked into HTML markup from that {{

form }} by Django’s template language.

We now have a working web form, described by a Django Form, processed by a view,

and rendered as an HTML <form>.

Get and Post Method

Working with form templates

All you need to do to get your form into a template is to place the form instance into

the template context. So if your form is called form in the context, {{ form }} will render

its <label> and <input> elements appropriately.

Form rendering options:

There are other output options though for the <label>/<input> pairs:

• {{ form.as_table }} will render them as table cells wrapped in <tr> tags

• {{ form.as_p }} will render them wrapped in <p> tags

• {{ form.as_ul }} will render them wrapped in tags

• Note that you’ll have to provide the surrounding <table> or elements yourself.

Disclaimer: The content is curated for educational purposes only.

© Edunet Foundation. All rights reserved.

Template, Render, Views, Context

Template Editing

Templates

● Templates are the third and most important part

of Django’s MVT Structure. A template in Django

is basically written in HTML, CSS, and JavaScript

in a .html file. Django framework efficiently

handles and generates dynamically HTML web

pages that are visible to the end-user.

● Django mainly functions with a backend so, in

order to provide a frontend and provide a layout

to our website, we use templates.

● There are two methods of adding the template to

our website depending on our needs.

1) We can use a single template directory which

will be spread over the entire project.

2) For each app of our project, we can create a

different template directory.
Image Source: https://media.geeksforgeeks.org/wp-content/uploads/20200124153519/django-views.jpg

Image Source: https://media.geeksforgeeks.org/wp-

content/uploads/20200124153519/django-views.jpg

https://media.geeksforgeeks.org/wp-content/uploads/20200124153519/django-views.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20200124153519/django-views.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20200124153519/django-views.jpg

The Django template language

● A Django template is a text document or a Python string marked-up using the

Django template language.

● Some constructs are recognized and interpreted by the template engine.

● The main ones are variables and tags.

● The main characteristics of Django Template language are Variables, Tags, Filters,

and Comments.

Let us discuss main characteristics one by one

Variables

Variables output a value from the context, which is a dict-like object mapping keys

to values. The context object we sent from the view can be accessed in the

template using variables of Django Template.

Syntax

{{ variable_name }}

Example

-Variables are surrounded by {{ and }} like this:

Eg.-My first name is {{ first_name }}. My last name is {{ last_name }}.

With a context of {‘first_name’: ‘Pawan’, ‘last_name’: ‘Kumar’}, this template

renders to:

My first name is Pawan. My last name is Kumar.

Let us discuss main characteristics one by one (Continued)

Tags

It provide arbitrary logic in the rendering process

Syntax

{% tag_name %}

Example

Tags are surrounded by {% and %} like this:

{% csrf_token %}

Most tags accept arguments, for example :

{% cycle 'odd' 'even' %}

Let us discuss main characteristics one by one (Continued)

Filters

Django Template Engine provides filters that are used to transform the values of

variables and tag arguments.

Tags can’t modify the value of a variable whereas filters can be used for incrementing

the value of a variable or modifying it to one’s own need.

Syntax

{{ variable_name | filter_name }}

Filters can be “chained.” The output of one filter is applied to the next.

{{ text|escape|linebreaks }} is a common idiom for escaping text contents, then

converting line breaks to <p> tags.

Example

{{ value | length }}

If value is [‘a’, ‘b’, ‘c’, ‘d’], the output will be 4.

Let us discuss main characteristics one by one (Continued)

Comments

Template ignores everything between {% comment %} and {% end comment %}.

An optional note may be inserted in the first tag.

For example, this is useful when commenting out code for documenting why the code

was disabled.

Syntax

{% comment 'comment_name' %}

{% endcomment %}

Example :

{% comment "Optional note" %}

Commented out text with {{ create_date|date:"c" }}

{% endcomment %}

Let us discuss main characteristics one by one (Continued)

Template Inheritance

Template inheritance allows you to build a base “skeleton” template that contains all the

common elements of your site and defines blocks that child templates can override.

extends tag is used for the inheritance of templates in Django. One needs to repeat the

same code again and again. Using extends we can inherit templates as well as

variables.

Syntax

{% extends 'template_name.html' %}

Let us discuss main characteristics one by one (Continued)

Template Inheritance

Example :

assume the following directory structure:

dir1/

template.html

base2.html

my/

base3.html

base1.html

In template.html, the following paths would be valid:

{% extends "./base2.html" %}

{% extends "../base1.html" %}

{% extends "./my/base3.html" %}

Example on Django Template : Let us create one template and

render it .

Step1) Create view.py

import Http Response from django

from django.shortcuts import render

create a function

def learn_view(request):

create a dictionary to pass

data to the template

context ={

"data":"Updating from the list",

"list":['Data Science', 'Python', 'Django', 'HTML5','JavaScript']

}

return response with template and context

return render(request, "learn.html", context)

Example on Django Template : Let us create one template and

render it .

Step2) URL Mapping: open urls.py

from django.urls import path

importing views from views..py

from .views import learn_view

urlpatterns = [

path('', learn_view),

]

Example on Django Template : Let us create one template and render it .

Step3) Create template

Create folder named as template and create new file names learn.html

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="ie=edge">
<title>Homepage</title>

</head>
<body>

<h1>Welcome to Learn Django.</h1>
<p> Data is {{ data }}</p>
<h4>List is </h4>

{% for i in list %}
{{ i }}
{% endfor %}

</body>
</html>

Example on Django Template : Let us create one template and

render it .

Step4) Open settings.py and Configure TEMPLATES section

-Copy path of your template directory and paste under TEMPLATES section in

seetings.py

'DIRS': ['C:\Users\Hp\Desktop\learndjango\learndjango\templates'],

Example on Django Template : Let us create one template and

render it .

Step5) check output : Visit http://127.0.0.1:8000/

Disclaimer: The content is curated for educational purposes only.

© Edunet Foundation. All rights reserved.

SQL operations in Django

Django Models

Disclaimer: The content is curated for educational purposes only.

© Edunet Foundation. All rights reserved.

Django Models

Django Models

● A model is the single, definitive source of information about your data. It contains the

essential fields and behaviors of the data you’re storing. Generally, each model maps to a

single database table.

● A Django model is the built-in feature that Django uses to create tables, their fields, and

various constraints. In short, Django Models is the SQL of Database one uses with Django.

● SQL (Structured Query Language) is complex and involves a lot of different queries for

creating, deleting, updating or any other stuff related to database. Django models simplify

the tasks and organize tables into models. Generally, each model maps to a single

database table.

● Django models provide simplicity, consistency, version control and advanced metadata

handling.

● Basics of a model include –

• Each model is a Python class that subclasses django.db.models.Model.

• Each attribute of the model represents a database field.

• With all of this, Django gives you an automatically-generated database-access API

Quick Example : Creating Models

● This example model defines a Person, which

has a first_name and last_name:

from django.db import models

class Person(models.Model):

first_name = models.CharField(max_length=30)

last_name = models.CharField(max_length=30)

first_name and last_name are fields of the

model. Each field is specified as a class

attribute, and each attribute maps to a

database column.

The Person model would create a

database table like this:

CREATE TABLE myapp_person (

"id" serial NOT NULL PRIMARY KEY,

"first_name" varchar(30) NOT NULL,

"last_name" varchar(30) NOT NULL

);

Using Models

● Once you have defined your models, you need to tell Django you’re going to use those models.

Do this by editing your settings file and changing the INSTALLED_APPS setting to add the

name of the module that contains your models.py.

● For example, if the models for your application live in the module myapp.models (the package

structure that is created for an application by the manage.py startapp script),

INSTALLED_APPS should read, in part:

INSTALLED_APPS = [

#...

'myapp’,

#...

]

• When you add new apps to INSTALLED_APPS, be sure to run following commands for making

migrations

> manage.py makemigrations

> manage.py migrate

Fields : -creating model Fields

● The most important part of a model – and the only required part of a model – is the list of

database fields it defines. Fields are specified by class attributes. Be careful not to choose field

names that conflict with the models API like clean, save, or delete.

● Example:

from django.db import models

class Musician(models.Model):

first_name = models.CharField(max_length=50)

last_name = models.CharField(max_length=50)

instrument = models.CharField(max_length=100)

class Album(models.Model):

artist = models.ForeignKey(Musician, on_delete=models.CASCADE)

name = models.CharField(max_length=100)

release_date = models.DateField()

num_stars = models.IntegerField()

Fields types : -creating model Fields

● Each field in your model should be an instance of the appropriate Field class. Django uses the

field class types to determine a few things:

The column type, which tells the database what kind of data to store (e.g. INTEGER, VARCHAR,

TEXT).

The default HTML widget to use when rendering a form field (e.g. <input type="text">, <select>).

The minimal validation requirements, used in Django’s admin and in automatically-generated forms.

● Django ships with dozens of built-in field types; you can find the complete list in the model field

reference.

● Few Filed types are listed below:

● AutoField IntegerField

● CharField TextField

● DateField FileField

● ImageField EmailField

● DecimalField JSONField

https://docs.djangoproject.com/en/4.0/ref/models/fields/
https://docs.djangoproject.com/en/4.0/ref/models/fields/

Fields options : -creating model Fields

● Each field takes a certain set of field-specific arguments. For example, CharField (and its

subclasses) require a max_length argument which specifies the size of the VARCHAR database

field used to store the data.

● Here’s a quick summary of the most often-used ones:

1) null -If True, Django will store empty values as NULL in the database. Default is False.

2) blank -If True, the field is allowed to be blank. Default is False.

3) choices- A sequence of 2-tuples to use as choices for this field. If this is given, the default form

widget will be a select box instead of the standard text field and will limit choices to the choices

given.

A choices list looks like this:

YEAR_IN_SCHOOL_CHOICES = [

('FR', 'Freshman'),

('SO', 'Sophomore'),

('JR', 'Junior'),

('SR', 'Senior'),

('GR', 'Graduate’),]

Disclaimer: The content is curated for educational purposes only.

© Edunet Foundation. All rights reserved.

SQL operations in Django

Making queries :create model

● Once you’ve created your data models, Django automatically gives you a database-abstraction API that

lets you create, retrieve, update and delete objects. we’ll refer to the following models
from datetime import date

from django.db import models

class Blog(models.Model):

name = models.CharField(max_length=100)

tagline = models.TextField()

def __str__(self):

return self.name

class Author(models.Model):

name = models.CharField(max_length=200)

email = models.EmailField()

def __str__(self):

return self.name

class Entry(models.Model):

blog = models.ForeignKey(Blog, on_delete=models.CASCADE)

headline = models.CharField(max_length=255)

body_text = models.TextField()

pub_date = models.DateField()

mod_date = models.DateField(default=date.today)

authors = models.ManyToManyField(Author)

number_of_comments = models.IntegerField(default=0)

number_of_pingbacks = models.IntegerField(default=0)

rating = models.IntegerField(default=5)

def __str__(self):

return self.headline

Making queries : Creating objects

● A model class represents a database table, and an instance of that class represents a particular record

in the database table.

● To create an object, instantiate it using keyword arguments to the model class, then call save() to save it

to the database.

● Assuming models live in a file mysite/blog/models.py, here’s an example:

>>> from blog.models import Blog

>>> b = Blog(name='Beatles Blog', tagline='All the latest Beatles news.')

>>> b.save()

This performs an INSERT SQL statement behind the scenes. Django doesn’t hit the database until you

explicitly call save().

The save() method has no return value.

● To create and save an object in a single step, use the create() method.

Making queries : Saving changes to objects

● To save changes to an object that’s already in the database, use save().

● Given a Blog instance b5 that has already been saved to the database, this example changes its

name and updates its record in the database:

>>> b5.name = 'New name'

>>> b5.save()

● This performs an UPDATE SQL statement behind the scenes. Django doesn’t hit the database

until you explicitly call save().

Making queries : Retrieving objects

● To retrieve objects from your database, construct a QuerySet via a Manager on your model class.

● A QuerySet represents a collection of objects from your database. It can have zero, one or many filters. Filters narrow down the query

results based on the given parameters. In SQL terms, a QuerySet equates to a SELECT statement, and a filter is a limiting clause such as

WHERE or LIMIT.

● You get a QuerySet by using your model’s Manager. Each model has at least one Manager, and it’s called objects by default. Access it

directly via the model class, like so:

● >>> Blog.objects

● <django.db.models.manager.Manager object at ...>

● >>> b = Blog(name='Foo', tagline='Bar')

● >>> b.objects

● Traceback:

● ...

● AttributeError: "Manager isn't accessible via Blog instances.“

● The Manager is the main source of QuerySets for a model. For example, Blog.objects.all() returns a QuerySet that contains all Blog objects

in the database.

● Retrieving all objects¶

● The simplest way to retrieve objects from a table is to get all of them. To do this, use the all() method on a Manager:

● >>> all_entries = Entry.objects.all()

● The all() method returns a QuerySet of all the objects in the database.

Making queries : Retrieving specific objects with filters

● The QuerySet returned by all() describes all objects in the database table. Usually, though, you’ll need to select only a subset of the

complete set of objects.

● To create such a subset, you refine the initial QuerySet, adding filter conditions. The two most common ways to refine a QuerySet

are:

● filter(**kwargs)

● -Returns a new QuerySet containing objects that match the given lookup parameters.

●

● exclude(**kwargs)

● -Returns a new QuerySet containing objects that do not match the given lookup parameters.

● The lookup parameters (**kwargs in the above function definitions) should be in the format described in Field lookups below:

● For example, to get a QuerySet of blog entries from the year 2006, use filter() like so:

● Entry.objects.filter(pub_date__year=2006)

● With the default manager class, it is the same as:

● Entry.objects.all().filter(pub_date__year=2006)

Making queries :Retrieving a single object with get()

● filter() will always give you a QuerySet, even if only a single object matches the query - in this case, it will

be a QuerySet containing a single element.

● If you know there is only one object that matches your query, you can use the get() method on a

Manager which returns the object directly:

● >>> one_entry = Entry.objects.get(pk=1)

Making queries : Limiting QuerySets

● Use a subset of Python’s array-slicing syntax to limit your QuerySet to a certain number of results. This

is the equivalent of SQL’s LIMIT and OFFSET clauses.

● For example, this returns the first 5 objects (LIMIT 5):

● >>> Entry.objects.all()[:5]

● This returns the sixth through tenth objects (OFFSET 5 LIMIT 5):

● >>> Entry.objects.all()[5:10]

● Negative indexing (i.e. Entry.objects.all()[-1]) is not supported

Performing raw SQL queries

● Django gives you two ways of performing raw SQL queries: you can use Manager.raw() to perform raw

queries and return model instances, or you can avoid the model layer entirely and execute custom SQL

directly.

● The raw() manager method can be used to perform raw SQL queries that return model instances:

● Manager.raw(raw_query, params=(), translations=None)

● This method takes a raw SQL query, executes it, and returns a django.db.models.query.RawQuerySet

instance. This RawQuerySet instance can be iterated over like a normal QuerySet to provide object

instances.

● This is best illustrated with an example. Suppose you have the following model:

class Person(models.Model):

first_name = models.CharField(...)

last_name = models.CharField(...)

birth_date = models.DateField(...)

Performing raw SQL queries (Continued)

● You could then execute custom SQL like so:

>>> for p in Person.objects.raw('SELECT * FROM myapp_person'):

... print(p)

John Smith

Jane Jones

● it’s exactly the same as running Person.objects.all().

● Index lookups:

● raw() supports indexing, so if you need only the first result you can write:

● >>> first_person = Person.objects.raw('SELECT * FROM myapp_person')[0]

Django CRUD (Create, Retrieve, Update, Delete) Function Based

Views

● Django is a Python-based web framework which allows you to quickly create web application

without all of the installation or dependency problems that you normally will find with other

frameworks.

● Django is based on MVT (Model View Template) architecture and revolves around CRUD

(Create, Retrieve, Update, Delete) operations.

● CRUD means performing Create, Retrieve, Update and Delete operations on a table in a

database.

Django CRUD operations

● Create – create or add new entries in a table in

the database.

● Retrieve – read, retrieve, search, or view

existing entries as a list(List View) or retrieve a

particular entry in detail (Detail View)

● Update – update or edit existing entries in a

table in the database

● Delete – delete, deactivate, or remove existing

entries in a table in the database

Image Source: https://media.geeksforgeeks.org/wp-

content/uploads/20200114185631/Untitled-Diagram-316-

1024x630.jpg

https://media.geeksforgeeks.org/wp-content/uploads/20200114185631/Untitled-Diagram-316-1024x630.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20200114185631/Untitled-Diagram-316-1024x630.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20200114185631/Untitled-Diagram-316-1024x630.jpg

Disclaimer: The content is curated for educational purposes only.

© Edunet Foundation. All rights reserved.

Handling sessions, cookies

and

Working with JSON and AJAX

Disclaimer: The content is curated for educational purposes only.

© Edunet Foundation. All rights reserved.

Handling sessions

What is session and How to use sessions:

● The session framework lets you store and retrieve arbitrary data on a per-site-visitor

basis. It stores data on the server side and abstracts the sending and receiving of

cookies. Cookies contain a session ID – not the data itself (unless you’re using the

cookie based backend).

● Django provides full support for anonymous sessions.

Enabling sessions

● Sessions are implemented via a piece of middleware.

● To enable session functionality, do the following:

● Edit the MIDDLEWARE setting and make sure it contains

'django.contrib.sessions.middleware.SessionMiddleware'. The default settings.py created

by django-admin startproject has SessionMiddleware activated.

● If you don’t want to use sessions, you might as well remove the SessionMiddleware line

from MIDDLEWARE and 'django.contrib.sessions' from your INSTALLED_APPS. It’ll save

you a small bit of overhead.

Configuring the session engine

● By default, Django stores sessions in your database (using the model

django.contrib.sessions.models.Session). Though this is convenient, in some

setups it’s faster to store session data elsewhere, so Django can be configured to

store session data on your filesystem or in your cache.

Using database-backed sessions

● If you want to use a database-backed session, you need to add

'django.contrib.sessions' to your INSTALLED_APPS setting.

● Once you have configured your installation, run manage.py migrate to install the

single database table that stores session data.

Using file-based sessions

● To use file-based sessions, set the SESSION_ENGINE setting to

"django.contrib.sessions.backends.file".

● You might also want to set the SESSION_FILE_PATH setting (which defaults to

output from tempfile.gettempdir(), most likely /tmp) to control where Django stores

session files. Be sure to check that your web server has permissions to read and

write to this location.

Using cookie-based sessions

● To use cookies-based sessions, set the SESSION_ENGINE setting to

"django.contrib.sessions.backends.signed_cookies".

● The session data will be stored using Django’s tools for cryptographic signing and

the SECRET_KEY setting.

Using sessions in views
● When SessionMiddleware is activated, each HttpRequest object – the first argument to any

Django view function – will have a session attribute, which is a dictionary-like object.

● You can read it and write to request.session at any point in your view. You can edit it multiple

times.

class backends.base.SessionBase

● This is the base class for all session objects. It has the following standard dictionary methods:

__getitem__(key)

Example: fav_color = request.session['fav_color']

● __setitem__(key, value)

Example: request.session['fav_color'] = 'blue’

• __delitem__(key)¶

Example: del request.session['fav_color']. This raises KeyError if the given key isn’t already in

the session.

Using sessions in views (Continued)

● ___contains__(key)

Example: 'fav_color' in request.session

● get(key, default=None)

Example: fav_color = request.session.get('fav_color', 'red')

● pop(key, default=__not_given)

Example: fav_color = request.session.pop('fav_color', 'blue’)

• keys()

• items()

• setdefault()

• clear()

Using sessions in views (Continued)

It also has these methods:

flush()

Deletes the current session data from the session and deletes the session cookie. This is used if

you want to ensure that the previous session data can’t be accessed again from the user’s

browser (for example, the django.contrib.auth.logout() function calls it).

set_test_cookie()

Sets a test cookie to determine whether the user’s browser supports cookies. Due to the way

cookies work, you won’t be able to test this until the user’s next page request.

test_cookie_worked()

Returns either True or False, depending on whether the user’s browser accepted the test cookie.

Due to the way cookies work, you’ll have to call set_test_cookie() on a previous, separate page

request.

Using sessions in views (Continued)
delete_test_cookie()

Deletes the test cookie. Use this to clean up after yourself.

get_session_cookie_age()

Returns the value of the setting SESSION_COOKIE_AGE. This can be overridden in a custom

session backend.

set_expiry(value)
Sets the expiration time for the session. You can pass a number of different values:

• If value is an integer, the session will expire after that many seconds of inactivity. For example, calling

request.session.set_expiry(300) would make the session expire in 5 minutes.

• If value is a datetime or timedelta object, the session will expire at that specific date/time. Note that datetime and timedelta

values are only serializable if you are using the PickleSerializer.

• If value is 0, the user’s session cookie will expire when the user’s web browser is closed.

• If value is None, the session reverts to using the global session expiry policy.

• Reading a session is not considered activity for expiration purposes. Session expiration is computed from the last time the

session was modified.

Using sessions in views (Continued)

get_expiry_age()

Returns the number of seconds until this session expires. For sessions with no custom expiration (or those set

to expire at browser close), this will equal SESSION_COOKIE_AGE.

This function accepts two optional keyword arguments:

• modification: last modification of the session, as a datetime object. Defaults to the current time.

• expiry: expiry information for the session, as a datetime object, an int (in seconds), or None. Defaults to the

value stored in the session by set_expiry(), if there is one, or None.

get_expiry_date()

Returns the date this session will expire. For sessions with no custom expiration (or those set to expire at

browser close), this will equal the date SESSION_COOKIE_AGE seconds from now.

This function accepts the same keyword arguments as get_expiry_age(), and similar notes on usage apply.

Using sessions in views (Continued)

get_expire_at_browser_close()

Returns either True or False, depending on whether the user’s session cookie will expire when

the user’s web browser is closed.

clear_expired()

Removes expired sessions from the session store. This class method is called by clearsessions.

cycle_key()

Creates a new session key while retaining the current session data. django.contrib.auth.login()

calls this method to mitigate against session fixation.

Disclaimer: The content is curated for educational purposes only.

© Edunet Foundation. All rights reserved.

Working with JSON and AJAX

Working with JSON

● JSON (JavaScript Object Notation) is a lightweight data-interchange format. The

official Internet media type for JSON is application/json. The JSON filename

extension is .json. It is easy for humans to read and write and for machines to parse

and generate.

What is JSON

Django JsonResponse

● JsonResponse is an HttpResponse subclass that helps to create a JSON-encoded

response. Its default Content-Type header is set to application/json. The first

parameter, data, should be a dict instance. If the safe parameter is set to False, any

object can be passed for serialization; otherwise only dict instances are allowed

JsonResponse objects

class JsonResponse(data, encoder=DjangoJSONEncoder, safe=True, json_dumps_params=None, **kwargs)

An HttpResponse subclass that helps to create a JSON-encoded response. It inherits most behavior from its superclass with a

couple differences:

Its default Content-Type header is set to application/json.

The first parameter, data, should be a dict instance. If the safe parameter is set to False (see below) it can be any JSON-

serializable object.

The encoder, which defaults to django.core.serializers.json.DjangoJSONEncoder, will be used to serialize the data. See JSON

serialization for more details about this serializer.

The safe boolean parameter defaults to True. If it’s set to False, any object can be passed for serialization (otherwise only dict

instances are allowed). If safe is True and a non-dict object is passed as the first argument, a TypeError will be raised.

The json_dumps_params parameter is a dictionary of keyword arguments to pass to the json.dumps() call used to generate the

response.

JsonResponse objects (Continued)

Usage

Typical usage could look like:

>>> from django.http import JsonResponse

>>> response = JsonResponse({'foo': 'bar'})

>>> response.content

b'{"foo": "bar"}’

Serializing non-dictionary objects

In order to serialize objects other than dict you must set the safe parameter to False:

>>> response = JsonResponse([1, 2, 3], safe=False)

Without passing safe=False, a TypeError will be raised.

JsonResponse objects (Continued)

Changing the default JSON encoder

If you need to use a different JSON encoder class you can pass the encoder

parameter to the constructor method:

>>> response = JsonResponse(data, encoder=MyJSONEncoder)

Django JsonResponse example :

● Step 1) open command prompt and execute the following commands

> mkdir jsonresponse

> cd jsonresponse

> mkdir src

> cd src

We create the project and the and src directories. Then we locate to the src directory.

• step 2) run the command

> django-admin startproject jsonresponse .

We create a new Django project in the src directory.

Note: If the optional destination is provided, Django will use that existing directory as the project directory. If it is

omitted, Django creates a new directory based on the project name. We use the dot (.) to create a project inside the

current working directory.

We locate to the project directory.

This example demonstrate how to send JSON data in Django

Django JsonResponse example : (Continued)

● Step 3) open command prompt and execute the following command to show the tree structure

> tree /f

src

│ manage.py

│

└───jsonresponse

settings.py

urls.py

views.py

wsgi.py

__init__.py

● Note: The Django way is to put functionality into apps, which are created with django-admin startapp. In this

tutorial, we do not use an app to make the example simpler. We focus on demonstrating how to send JSON

response

Django JsonResponse example :(Continued)

● Step 4) open file src/jsonresponse/urls.py and add following code
from django.contrib import admin

from django.urls import path

from .views import send_json

urlpatterns = [

path('admin/', admin.site.urls),

path('sendjson/', send_json, name='send_json'),

]

We add a new route page; it calls the send_json() function from the views.py

module.

Django JsonResponse example :(Continued)

● Step 5) create new views.py under src/jsonresponse/views.py and add following

code
from django.http import JsonResponse

def send_json(request):

data = [{'name': 'Peter', 'email': 'peter@example.org'},

{'name': 'Julia', 'email': 'julia@example.org'}]

return JsonResponse(data, safe=False)

• Inside send_json(), we define a list of dictionaries. Since it is a list, we set safe to

False. If we did not set this parameter, we would get a TypeError with the following

message:

In order to allow non-dict objects to be serialized set the safe parameter to False.

Django JsonResponse example :(Continued)

● Step 6) open command prompt and run the command

> python manage.py runserver

• Step 7) We run the server and navigate to http://127.0.0.1:8000/sendjson/

• Step 8) We use the curl tool to make the GET request .open command prompt and

run command

> curl localhost:8000/sendjson/

It shows output as follows:

[{"name": "Peter", "email": "peter@example.org"},

{"name": "Julia", "email": "julia@example.org"}]

http://127.0.0.1:8000/sendjson/

Disclaimer: The content is curated for educational purposes only.

© Edunet Foundation. All rights reserved.

Working with AJAX

In this module, we learnt about

● Web Framework, Django Introduction, Django Architecture

● Django MVC, MVT (Model View Template)

● Views and URL mapping, HttpRequest and HttpResponse , GET and

POST Method

● Template, Render, Views, Context

● Template Editing

● SQL operation in django

● Handling sessions, cookies and working with JSON and AJAX

Working with AJAX

● AJAX stands for Asynchronous JavaScript And XML, which allows web pages to

update asynchronously by exchanging data to and from the server.

● This means you can update parts of a web page without reloading the complete web

page.

● It involves a combination of a browser built-in XMLHttpRequest object, JavaScript,

and HTML DOM.

What is AJAX

How AJAX Works
● An event occurs on a web page, such as an initial page load, form submission, link or

button click, etc.

● An XMLHttpRequest object is created and sends the request to the server .

● The server responds to the request.

● The response is captured and then server respond back with response data.

● There are many scenarios where you may want to make GET and POST requests to load

and post data from the server asynchronously, back and forth. Additionally, this enables

web applications to be more dynamic and reduces page load time.

Image Source: https://media.geeksforgeeks.org/wp-content/uploads/ajax.jpg

https://media.geeksforgeeks.org/wp-content/uploads/ajax.jpg

Web References :

© Edunet Foundation. All rights reserved.

● Web framework : https://en.wikipedia.org/wiki/Web_framework

● What is Django : https://en.wikipedia.org/wiki/Django_(web_framework)

● MVC : https://www.tutorialspoint.com/struts_2/basic_mvc_architecture.htm

● MVT: https://www.geeksforgeeks.org/django-project-mvt-structure/

● Views : https://docs.djangoproject.com/en/4.0/topics/http/views/

● https://www.geeksforgeeks.org/views-in-django-python/

● SQL : https://docs.djangoproject.com/en/4.0/topics/db/sql/

● Sessions : https://docs.djangoproject.com/en/4.0/topics/http/sessions/

● AJAX : https://www.pluralsight.com/guides/work-with-ajax-Django

● Django : https://www.guru99.com/django-tutorial.html#5

● Django : https://www.javatpoint.com/django-tutorial

● Request and Response objects : https://docs.djangoproject.com/en/4.0/ref/request-response/

● Get and post method : https://docs.djangoproject.com

https://en.wikipedia.org/wiki/Web_framework
https://en.wikipedia.org/wiki/Django_(web_framework)
https://www.tutorialspoint.com/struts_2/basic_mvc_architecture.htm
https://www.geeksforgeeks.org/django-project-mvt-structure/#:~:text=Django%20is%20based%20on%20MVT,for%20developing%20a%20web%20application.&text=View%3A%20The%20View%20is%20the,CSS%2FJavascript%20and%20Jinja%20files
https://docs.djangoproject.com/en/4.0/topics/http/views/
https://www.geeksforgeeks.org/views-in-django-python/
https://docs.djangoproject.com/en/4.0/topics/db/sql/
https://docs.djangoproject.com/en/4.0/topics/http/sessions/
https://www.pluralsight.com/guides/work-with-ajax-Django
https://www.guru99.com/django-tutorial.html#5
https://www.javatpoint.com/django-tutorial
https://docs.djangoproject.com/en/4.0/ref/request-response/
https://docs.djangoproject.com/en/4.0/topics/forms/#:~:text=GET%20and%20POST&text=Django's%20login%20form%20is%20returned,this%20to%20compose%20a%20URL

Web References :

© Edunet Foundation. All rights reserved.

● Django project https://docs.djangoproject.com/en/4.0/intro/tutorial01/

● https://docs.djangoproject.com/en/4.0/intro/tutorial02/

https://docs.djangoproject.com/en/4.0/intro/tutorial01/
https://docs.djangoproject.com/en/4.0/intro/tutorial02/

Disclaimer: The content is curated for educational purposes only.

© Edunet Foundation. All rights reserved.

Thank you

	Slide 1
	Slide 2: Python Programming
	Slide 3: In this section, we will discuss:
	Slide 4: In this section, we will discuss:
	Slide 5
	Slide 6: Introduction to Python
	Slide 7: Introduction to Python
	Slide 8
	Slide 9: History
	Slide 10: History
	Slide 11
	Slide 12: Features
	Slide 13: Features
	Slide 14: Features
	Slide 15: Features
	Slide 16: Features
	Slide 17: Features
	Slide 18: Features
	Slide 19: Features
	Slide 20: Features
	Slide 21: Features
	Slide 22: Features
	Slide 23: Features
	Slide 24
	Slide 25
	Slide 26: Setup Successful
	Slide 27: Setting Up Path
	Slide 28: Setting Up Path
	Slide 29: Setting Up Path
	Slide 30: Setting Up Path
	Slide 31: Setting Up Path
	Slide 32: Setting Up Path
	Slide 33: Setting Up Path
	Slide 34: Setting Up Path
	Slide 35
	Slide 36: Basic Syntax Variable
	Slide 37: Basic Syntax Variable
	Slide 38: Basic Syntax Variable
	Slide 39: Basic Syntax Variable
	Slide 40: Basic Syntax Variable
	Slide 41: Basic Syntax Variable
	Slide 42: Basic Syntax Variable
	Slide 43: Basic Syntax Variable
	Slide 44: Basic Syntax Variable
	Slide 45: Basic Syntax Variable
	Slide 46: Basic Syntax Variable
	Slide 47: Basic Syntax Variable
	Slide 48: Basic Syntax Variable
	Slide 49: Basic Syntax Variable
	Slide 50: Basic Syntax Variable
	Slide 51: Basic Syntax Variable
	Slide 52: Basic Syntax Variable
	Slide 53
	Slide 54: Data Types Operator
	Slide 55: Data Types Operator
	Slide 56: Data Types Operator
	Slide 57: Data Types Operator
	Slide 58: Data Types Operator
	Slide 59: Data Types Operator
	Slide 60: Data Types Operator
	Slide 61: Data Types Operator
	Slide 62: Data Types Operator
	Slide 63
	Slide 64: Conditional Statement
	Slide 65: Conditional Statement
	Slide 66: Conditional Statement
	Slide 67: Conditional Statement
	Slide 68: Conditional Statement
	Slide 69: Conditional Statement
	Slide 70: Conditional Statement
	Slide 71: Conditional Statement
	Slide 72: Conditional Statement
	Slide 73: Conditional Statement
	Slide 74: Conditional Statement
	Slide 75: Conditional Statement
	Slide 76: Conditional Statement
	Slide 77: Conditional Statement
	Slide 78
	Slide 79: Looping
	Slide 80: Looping
	Slide 81: Looping
	Slide 82: Looping
	Slide 83: Looping
	Slide 84: Looping
	Slide 85: Looping
	Slide 86: Looping
	Slide 87: Looping
	Slide 88
	Slide 89: Control Statement
	Slide 90: Control Statement
	Slide 91: Control Statement
	Slide 92: Control Statement
	Slide 93: Control Statement
	Slide 94: Control Statement
	Slide 95: Control Statement
	Slide 96
	Slide 97: String Manipulation
	Slide 98: String Manipulation
	Slide 99: String Manipulation
	Slide 100: String Manipulation
	Slide 101: String Manipulation
	Slide 102: String Manipulation
	Slide 103: String Manipulation
	Slide 104: String Manipulation
	Slide 105: String Manipulation
	Slide 106: String Manipulation
	Slide 107: String Manipulation
	Slide 108: List
	Slide 109: List
	Slide 110: List
	Slide 111: List
	Slide 112: List
	Slide 113: List
	Slide 114: List
	Slide 115: List
	Slide 116: Tuple
	Slide 117: Tuple
	Slide 118: Tuple
	Slide 119: Tuple
	Slide 120: Tuple
	Slide 121: Tuple
	Slide 122
	Slide 123: Function & Methods
	Slide 124: Function & Methods
	Slide 125: Function & Methods
	Slide 126: Function & Methods
	Slide 127: Function & Methods
	Slide 128: Function & Methods
	Slide 129: Function & Methods
	Slide 130: Function & Methods
	Slide 131: Function & Methods
	Slide 132: Function & Methods
	Slide 133: Function & Methods
	Slide 134
	Slide 135: Dictionary
	Slide 136: Dictionary
	Slide 137: Dictionary
	Slide 138: Dictionary
	Slide 139: Dictionary
	Slide 140: Dictionary
	Slide 141: Functions
	Slide 142: Functions
	Slide 143: Functions
	Slide 144: Functions
	Slide 145: Functions
	Slide 146
	Slide 147: Modules
	Slide 148: Modules
	Slide 149: Modules
	Slide 150: Modules
	Slide 151: Modules
	Slide 152: Modules
	Slide 153: Modules
	Slide 154: Modules
	Slide 155: Modules
	Slide 156: Input and Output
	Slide 157: Input and Output
	Slide 158: Input and Output
	Slide 159: Input and Output
	Slide 160: Input and Output
	Slide 161: Input and Output
	Slide 162: Input and Output
	Slide 163: Input and Output
	Slide 164: Input and Output
	Slide 165: Input and Output
	Slide 166: Input and Output
	Slide 167: Input and Output
	Slide 168: Input and Output
	Slide 169: Input and Output
	Slide 170: Input and Output
	Slide 171: Input and Output
	Slide 172: Input and Output
	Slide 173
	Slide 174: Exception Handling
	Slide 175: Exception Handling
	Slide 176
	Slide 177: Exception Handling
	Slide 178: Exception Handling
	Slide 179: Exception Handling
	Slide 180: Exception Handling
	Slide 181: Exception Handling
	Slide 182: Exception Handling
	Slide 183: Object Oriented Programming
	Slide 184: OOPS in Python
	Slide 185: OOPS in Python
	Slide 186: OOPS in Python
	Slide 187: Class in Python
	Slide 188: Class in Python
	Slide 189: Classes vs Instances
	Slide 190: How to define a class
	Slide 191: How to define a class
	Slide 192: How to define a class
	Slide 193: Encapsulation in Python
	Slide 194: Inheritance in Python
	Slide 195: Example of Inheritance
	Slide 196: Example of Inheritance
	Slide 197: Example of Inheritance
	Slide 198: Polymorphism
	Slide 199: Self Parameter
	Slide 200: Returning Values
	Slide 201: Instances as return values
	Slide 202: Constructors
	Slide 203: Syntax for constructor declaration
	Slide 204: Constructor Types
	Slide 205: Example – Default Constructor
	Slide 206: Example – Parameterized Constructor
	Slide 207: Class variables and Instance Variables
	Slide 208: Destructors in Python
	Slide 209: Database
	Slide 210: Database
	Slide 211: Database
	Slide 212: Installing MySQL Connector/Python
	Slide 213: Installing MySQL Connector/Python
	Slide 214: Establishing a Connection With MySQL Server
	Slide 215: Establishing a Connection With MySQL Server
	Slide 216: Establishing a Connection With MySQL Server
	Slide 217: Creating a new database
	Slide 218: Creating a new database
	Slide 219: Show Database
	Slide 220: Creating Tables
	Slide 221: Creating Tables
	Slide 222: Insert Data into tables
	Slide 223: Inserting Multiple Rows
	Slide 224: Fetching Data
	Slide 225: Where Clause
	Slide 226: Update Data
	Slide 227: Delete Data from Table
	Slide 228: Drop Tables
	Slide 229: Orberby Clause
	Slide 230: Web Development in Python
	Slide 231: Django
	Slide 232: Python Flask
	Slide 233: Python Flask
	Slide 234: Installation
	Slide 235: Simple Application
	Slide 236: Run the Application
	Slide 237: Python for Web-Django
	Slide 238: In this module, student will learn about:
	Slide 239: Web Framework, Django Introduction, Django Architecture
	Slide 240: In this sub-section, we will discuss:
	Slide 241: Web Framework
	Slide 242: Introduction to Django
	Slide 243: Django Features
	Slide 244: Django Architecture
	Slide 245: Model-View-Template (MVT) Architecture (Continued)
	Slide 246
	Slide 247: Model-View-Controller (MVC) Architecture (Continued)
	Slide 248: In this section, Let us work practically. Lets get your hands dirty with code
	Slide 249: Installation of Django
	Slide 250: Installation of Django
	Slide 251: Step 1) Creating environment for Django project (Continued)
	Slide 252: Step 1) Creating environment for Django project (Continued)
	Slide 253: Step 2) Creating the first Project with django
	Slide 254: Creating the first Project with django
	Slide 255: Creating the first Project with django
	Slide 256: Creating the first Project with django
	Slide 257: Creating the first Project with django
	Slide 258: Creating the first Project with django
	Slide 259: Creating the first Project with django
	Slide 260: Creating the first Project with django
	Slide 261: Creating the first Project with django
	Slide 262: Writing your first Django app: basic poll application
	Slide 263: Writing your first Django app: basic poll application
	Slide 264: Writing your first Django app: basic poll application
	Slide 265: Writing your first Django app: basic poll application
	Slide 266: Writing your first Django app: basic poll application
	Slide 267: Writing your first Django app: basic poll application
	Slide 268: Writing your first Django app: basic poll application
	Slide 269: Writing your first Django app: basic poll application
	Slide 270: Writing your first Django app: basic poll application
	Slide 271: Writing your first Django app: basic poll application
	Slide 272: Writing your first Django app: basic poll application
	Slide 273: Writing your first Django app: basic poll application
	Slide 274: Writing your first Django app: basic poll application
	Slide 275: Writing your first Django app: basic poll application
	Slide 276: Writing your first Django app: basic poll application
	Slide 277: Writing your first Django app: basic poll application
	Slide 278: Writing your first Django app: basic poll application
	Slide 279: Database
	Slide 280: Writing your first Django app: Part 2
	Slide 281: Writing your first Django app: Part 2
	Slide 282: Writing your first Django app: Part 2
	Slide 283: Writing your first Django app: Part 2
	Slide 284: Writing your first Django app: Part 2
	Slide 285: Writing your first Django app: Part 2
	Slide 286: Writing your first Django app: Part 2
	Slide 287: Writing your first Django app: Part 2
	Slide 288: Writing your first Django app: Part 2
	Slide 289: Writing your first Django app: Part 2
	Slide 290: Writing your first Django app: Part 2
	Slide 291: Writing your first Django app: Part 2
	Slide 292: Writing your first Django app: Part 2
	Slide 293: Writing your first Django app: Part 2
	Slide 294: Writing your first Django app: Part 2
	Slide 295: Writing your first Django app: Part 2
	Slide 296: Writing your first Django app: Part 2
	Slide 297: Writing your first Django app: Part 2
	Slide 298: Writing your first Django app: Part 2
	Slide 299: Writing your first Django app: Part 2
	Slide 300: Writing your first Django app: Part 2
	Slide 301: Writing your first Django app: Part 2
	Slide 302: Writing your first Django app: Part 2
	Slide 303: Writing your first Django app: Part 2
	Slide 304: Writing your first Django app: Part 2
	Slide 305: Writing your first Django app: Part 2
	Slide 306: Writing your first Django app: Part 2
	Slide 307: Writing your first Django app: Part 2
	Slide 308: Writing your first Django app: Part 2
	Slide 309: Django Admin
	Slide 310: Introducing the Django Admin
	Slide 311: Introducing the Django Admin
	Slide 312: Introducing the Django Admin
	Slide 313: Introducing the Django Admin
	Slide 314: Introducing the Django Admin
	Slide 315: Introducing the Django Admin
	Slide 316: Introducing the Django Admin
	Slide 317: Introducing the Django Admin
	Slide 318: Introducing the Django Admin
	Slide 319: Introducing the Django Admin
	Slide 320: Views and URL mapping, HttpRequest & HttpResponse, GET & POST Method
	Slide 321: Views
	Slide 322: Creating simple View : Example
	Slide 323: Creating simple View: Example Explanation
	Slide 324: URL Mapping : Example
	Slide 325: Output for DateTime example
	Slide 326: HttpRequest & HttpResponse,
	Slide 327: HttpRequest & HttpResponse
	Slide 328: HttpRequest
	Slide 329: HttpRequest
	Slide 330: HttpRequest
	Slide 331: HttpRequest
	Slide 332: HttpRequest
	Slide 333: HttpRequest
	Slide 334: HttpRequest
	Slide 335: HttpRequest
	Slide 336: HttpRequest
	Slide 337: HttpRequest
	Slide 338: HttpRequest
	Slide 339: HttpRequest
	Slide 340: HttpRequest
	Slide 341: HttpRequest
	Slide 342: HttpRequest
	Slide 343: HttpRequest
	Slide 344: HttpRequest
	Slide 345: HttpResponse
	Slide 346: HttpResponse
	Slide 347: HttpResponse
	Slide 348: HttpResponse
	Slide 349: HttpResponse
	Slide 350: HttpResponse
	Slide 351: HttpResponse
	Slide 352: HttpResponse
	Slide 353: HttpResponse
	Slide 354: HttpResponse
	Slide 355: HttpResponse
	Slide 356: HttpResponse
	Slide 357: HttpResponse
	Slide 358: HttpResponse
	Slide 359: HttpResponse
	Slide 360: HttpResponse
	Slide 361: HttpResponse
	Slide 362: HttpResponse
	Slide 363: GET & POST Method
	Slide 364: Get and Post Method
	Slide 365: Get and Post Method
	Slide 366: Get and Post Method
	Slide 367: Get and Post Method
	Slide 368: Get and Post Method
	Slide 369: Get and Post Method
	Slide 370: Get and Post Method
	Slide 371: Get and Post Method
	Slide 372: Get and Post Method
	Slide 373: Get and Post Method
	Slide 374: Get and Post Method
	Slide 375: Get and Post Method
	Slide 376: Get and Post Method
	Slide 377: Get and Post Method
	Slide 378: Get and Post Method
	Slide 379: Get and Post Method
	Slide 380: Get and Post Method
	Slide 381: Template, Render, Views, Context Template Editing
	Slide 382: Templates
	Slide 383: The Django template language
	Slide 384: Let us discuss main characteristics one by one
	Slide 385: Let us discuss main characteristics one by one (Continued)
	Slide 386: Let us discuss main characteristics one by one (Continued)
	Slide 387: Let us discuss main characteristics one by one (Continued)
	Slide 388: Let us discuss main characteristics one by one (Continued)
	Slide 389: Let us discuss main characteristics one by one (Continued)
	Slide 390: Example on Django Template : Let us create one template and render it .
	Slide 391: Example on Django Template : Let us create one template and render it .
	Slide 392: Example on Django Template : Let us create one template and render it .
	Slide 393: Example on Django Template : Let us create one template and render it .
	Slide 394: Example on Django Template : Let us create one template and render it .
	Slide 395: SQL operations in Django Django Models
	Slide 396: Django Models
	Slide 397: Django Models
	Slide 398: Quick Example : Creating Models
	Slide 399: Using Models
	Slide 400: Fields : -creating model Fields
	Slide 401: Fields types : -creating model Fields
	Slide 402: Fields options : -creating model Fields
	Slide 403: SQL operations in Django
	Slide 404: Making queries :create model
	Slide 405: Making queries : Creating objects
	Slide 406: Making queries : Saving changes to objects
	Slide 407: Making queries : Retrieving objects
	Slide 408: Making queries : Retrieving specific objects with filters
	Slide 409: Making queries :Retrieving a single object with get()
	Slide 410: Making queries : Limiting QuerySets
	Slide 411: Performing raw SQL queries
	Slide 412: Performing raw SQL queries (Continued)
	Slide 413: Django CRUD (Create, Retrieve, Update, Delete) Function Based Views
	Slide 414: Django CRUD operations
	Slide 415: Handling sessions, cookies and Working with JSON and AJAX
	Slide 416: Handling sessions
	Slide 417: What is session and How to use sessions:
	Slide 418: Configuring the session engine
	Slide 419: Using file-based sessions
	Slide 420: Using sessions in views
	Slide 421: Using sessions in views (Continued)
	Slide 422: Using sessions in views (Continued)
	Slide 423: Using sessions in views (Continued)
	Slide 424: Using sessions in views (Continued)
	Slide 425: Using sessions in views (Continued)
	Slide 426: Working with JSON and AJAX
	Slide 427: Working with JSON
	Slide 428: JsonResponse objects
	Slide 429: JsonResponse objects (Continued)
	Slide 430: JsonResponse objects (Continued)
	Slide 431: Django JsonResponse example :
	Slide 432: Django JsonResponse example : (Continued)
	Slide 433: Django JsonResponse example :(Continued)
	Slide 434: Django JsonResponse example :(Continued)
	Slide 435: Django JsonResponse example :(Continued)
	Slide 436: Working with AJAX
	Slide 437: In this module, we learnt about
	Slide 438: Working with AJAX
	Slide 439: Web References :
	Slide 440: Web References :
	Slide 441: Thank you

