ELECTRONIC MECHANIC

NSQF LEVEL - 5

2nd Semester

TRADE PRACTICAL

SECTOR: Electronics and Hardware

DIRECTORATE GENERAL OF TRAINING
MINISTRY OF SKILL DEVELOPMENT & ENTREPRENEURSHIP
GOVERNMENT OF INDIA

Sector : Electronics & Hardware

Duration: 2 - Year

Trade : Electronic Mechanic 2nd Semester - Trade Practical - NSQF level 5

Copyright ©2018 National Instructional Media Institute, Chennai

First Edition: November 2018 Copies: 1,000 First Reprint: February 2019 Copies: 2,000

Rs.185/-

All rights reserved.

No part of this publication can be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission in writing from the National Instructional Media Institute, Chennai.

Published by:

NATIONAL INSTRUCTIONAL MEDIA INSTITUTE
P. B. No.3142, CTI Campus, Guindy Industrial Estate,
Guindy, Chennai - 600 032.

Phone: 044 - 2250 0248, 2250 0657, 2250 2421

Fax: 91 - 44 - 2250 0791

email: chennai-nimi@nic.in, nimi_bsnl@dataone.in

Website: www.nimi.gov.in

FOREWORD

The Government of India has set an ambitious target of imparting skills to 30 crores people, one out of every four Indians, by 2020 to help them secure jobs as part of the National Skills Development Policy. Industrial Training Institutes (ITIs) play a vital role in this process especially in terms of providing skilled manpower. Keeping this in mind, and for providing the current industry relevant skill training to Trainees, ITI syllabus has been recently updated with the help of Mentor Councils comprising various stakeholder's viz. Industries, Entrepreneurs, Academicians and representatives from ITIs.

The National Instructional Media Institute (NIMI), Chennai, has now come up with instructional material to suit the revised curriculum for **Electronic Mechanic 2**nd **Semester Trade Practical NSQF Level - 5 in Electronics & Hardware Sector under semester pattern**. The NSQF Level - 5 Trade Practical will help the trainees to get an international equivalency standard where their skill proficiency and competency will be duly recognized across the globe and this will also increase the scope of recognition of prior learning. NSQF Level - 5 trainees will also get the opportunities to promote life long learning and skill development. I have no doubt that with NSQF Level - 5 the trainers and trainees of ITIs, and all stakeholders will derive maximum benefits from these IMPs and that NIMI's effort will go a long way in improving the quality of Vocational training in the country.

The Executive Director & Staff of NIMI and members of Media Development Committee deserve appreciation for their contribution in bringing out this publication.

Jai Hind

RAJESHAGGARWAL

Director General/Addl. Secretary
Ministry of Skill Development & Entrepreneurship,
Government of India.

New Delhi - 110 001

PREFACE

The National Instructional Media Institute (NIMI) was established in 1986 at Chennai by then Directorate General of Employment and Training (D.G.E & T), Ministry of Labour and Employment, (now under Directorate General of Training, Ministry of Skill Development and Entrepreneurship) Government of India, with technical assistance from the Govt. of the Federal Republic of Germany. The prime objective of this institute is to develop and provide instructional materials for various trades as per the prescribed syllabi under the Craftsman and Apprenticeship Training Schemes.

The instructional materials are created keeping in mind, the main objective of Vocational Training under NCVT/NAC in India, which is to help an individual to master skills to do a job. The instructional materials are generated in the form of Instructional Media Packages (IMPs). An IMP consists of Theory book, Practical book, Test and Assignment book, Instructor Guide, Audio Visual Aid (Wall charts and Transparencies) and other support materials.

The trade practical book consists of series of exercises to be completed by the trainees in the workshop. These exercises are designed to ensure that all the skills in the prescribed syllabus are covered. The trade theory book provides related theoretical knowledge required to enable the trainee to do a job. The test and assignments will enable the instructor to give assignments for the evaluation of the performance of a trainee. The wall charts and transparencies are unique, as they not only help the instructor to effectively present a topic but also help him to assess the trainee's understanding. The instructor guide enables the instructor to plan his schedule of instruction, plan the raw material requirements, day to day lessons and demonstrations.

IMPs also deals with the complex skills required to be developed for effective team work. Necessary care has also been taken to include important skill areas of allied trades as prescribed in the syllabus.

The availability of a complete Instructional Media Package in an institute helps both the trainer and management to impart effective training.

The IMPs are the outcome of collective efforts of the staff members of NIMI and the members of the Media Development Committees specially drawn from Public and Private sector industries, various training institutes under the Directorate General of Training (DGT), Government and Private ITIs.

NIMI would like to take this opportunity to convey sincere thanks to the Directors of Employment & Training of various State Governments, Training Departments of Industries both in the Public and Private sectors, Officers of DGT and DGT field institutes, proof readers, individual media developers and coordinators, but for whose active support NIMI would not have been able to bring out this materials.

Chennai - 600 032

R. P. DHINGRA EXECUTIVE DIRECTOR

ACKNOWLEDGEMENT

National Instructional Media Institute (NIMI) sincerely acknowledges with thanks for the co-operation and contribution extended by the following Media Developers and their sponsoring organisations to bring out this Instructional Material (**Trade Practical**) for the trade of **Electronic Mechanic** under Electronics and Hardware sector for ITIs.

MEDIA DEVELOPMENT COMMITTEE MEMBERS

Smt. K. Arul selvi _ Training officer

NSTI (W), Trichy.

Shri. C. Anand _ Vocational Instructor

Govt. ITI for women,

Puducherry.

Shri. A. Jayaraman _ Training officer (Retd.,)

Govt. of India, CTI, Chennai-32.

Shri. R.N. Krishnasamy _ Vocational Instructor (Retd.,)

Govt. of India, VRC, Chennai-32.

Shri. S. Gopalakrishnan _ Assistant Manager,

Co-ordinator, NIMI, Chennai - 32.

NIMI records its appreciation for the Data Entry, CAD, DTP operators for their excellent and devoted services in the process of development of this Instructional Material.

NIMI also acknowledges with thanks the invaluable efforts rendered by all other NIMI staff who have contributed towards the development of this Instructional Material.

NIMI is also grateful to everyone who has directly or indirectly helped in developing this Instructional Material.

INTRODUCTION

TRADE PRACTICAL

The trade practical manual is intented to be used in workshop. It consists of a series of practical exercise to be completed by the trainees during the Second Semester course of the Electronic Mechanic Trade supplemented and supported by instructions/ informations to assist in performing the exercises. These exercises are designed to ensure that all the skills in compliance with NSQF Level-5 prescribed syllabus are covered.

The manual is divided into ten modules. The distribution of time for the practical in the ten modules are given below.

Module 1	Transistor Amplifier	75 Hrs
Module 2	Oscillators	25 Hrs
Module 3	Wave shaping circuits	25 Hrs
Module 4	Power Electronic components	50 Hrs
Module 5	MOSFET & IGBT	25 Hrs
Module 6	Opto-Electronics	25 Hrs
Module 7	Basic Gates, Combinational circuits,	
	Flip Flops	75 Hrs
Module 8	Electronic Circuit Simulator	50 Hrs
Module 9	Counter & Shift Registers	75 Hrs
Module 10	Op - Amp & Timer 555 Applications	100 Hrs
	Project work	50 Hrs
	Total	575 Hrs

The skill training in the computer lab is planned through a series of practical exercises centred around some practical project. However, there are few instance where the individual exercise does not form a part of project.

While developing the practical manual a sincere effort was made to prepare each exercise which will be easy to understand and carry out even by below average traninee. However the development team accept that there is a scope for further improvement. NIMI, looks forward to the suggestions from the experienced training faculty for improving the manual.

TRADETHEORY

The manual of trade theory consists of theoretical information for the First Semester couse of the Electronic Mechanic Trade. The contents are sequenced according to the practical exercise contained in the manual on Trade practical. Attempt has been made to relate the theoretical aspects with the skill covered in each exercise to the extent possible. This co-relation is maintained to help the trainees to develop the perceptional capabilities for performing the skills.

The Trade Theory has to be taught and learnt along with the corresponding exercise contained in the manual on trade practical. The indicating about the corresponding practical exercise are given in every sheet of this manual.

It will be preferable to teach/learn the trade theory connected to each exercise atleast one class before performing the related skills in the shop floor. The trade theory is to be treated as an integrated part of each exercise

The material is not the purpose of self learning and should be considered as supplementary to class room instruction.

CONTENTS

Exercise No.	Title of the Exercise	Page No.
	Module 1: Transistor Amplifier	
2.1.102	Identify different transistors with respect to different package type, B-E-C pins, power, switching transistor, heatsink etc	1
2.1.103	Test the condition of a given transistor using Ohm-meter	4
2.1.104	Measure and Plot input and output characteristics of a transistor CE amplifier	7
2.1.105	Construct and test a transistor based switching circuit to control a relay (use relays of different coil voltages and transistors of different β)	10
2.1.106	Construct and test fixed bias, emitter bias, and voltage divider bias transistor amplifier	12
2.1.107	Construct and test a CE amplifier with and without emitter bypass capacitors	16
2.1.108	Construct and test a Common Base amplifier	20
2.1.109	Construct and test a Common Collector/Emitter Follower amplifier	23
2.1.110	Construct and test a Darlington amplifier	26
2.1.111	Construct and a two stage test RC-coupled Amplifier	29
2.1.112	Construct and test class-B complementary push-pull amplifier	31
2.1.113	Construct and test Calss C Tuned Amplifier	33
	Module 2: Oscillators	
2.2.114	Demonstrate Colpitt's oscillator, Hartley oscillator circuits and compare the output frequency of the oscillator by CRO	35
2.2.115	Construct and test RC phase-shift oscillator circuits	37
2.2.116	Construct and test a crystal oscillator circuit	39
2.2.117	Demonstrate Astable, Monostable and Bistable multivibrator using circuits transistors	40
	Module 3: Wave shaping circuits	
2.3.118	Construct and test shunt clipper	43
2.3.119	Construct and test series and dual clipper circuit using diodes	45
2.3.120	Construct and test clamper circuit using diodes	47
2.3.121	Construct and test zener diode as a peak clipper	49

Exercise No.	Title of the Exercise	Page No.
	Module 4: Power Electronic components	
2.4.122	Identify different power electronic components, their specification and terminals	50
2.4.123	Construct and test a FET Amplifier	53
2.4.124	Construct and test a circuit of SCR using UJT triggering	55
2.4.125	Identify different heatsinks used in SCRs	57
2.4.126	Construct a snubber circuit for protecting SCR use freewheeling diode to reduce back emf	59
2.4.127	Construct a jig circuit to test DIAC	60
2.4.128	Construct a simple dimmer circuit using TRIAC	62
2.4.129	Construct UJT based free running oscillator and change its frequency	64
	Module 5: MOSFET & IGBT	
2.5.130	Identify various power MOSFETs by its number and test by using multimeter	66
2.5.131	Identify different heatsinks used with various power MOSFET devices	67
2.5.132	Construct MOSFET test circuit with a small load	69
2.5.133	Identify IGBTs by their numbers and test by using multimeter	70
2.5.134	Construct IGBT test circuit with a small load	71
	Module 6: Opto-Electronics	
2.6.135	Test LEDs with DC supply and measure voltage drop and current using multimeter	72
2.6.136	Construct a circuit to test photo voltaic cell	73
2.6.137	Construct a circuit to switch a lamp load using photo diode	75
2.6.138	Construct a circuit to switch a lamp load using photo transistor	76
2.6.139	Identify Opto coupler input and output terminals and measure the quantum of Isolation between input/output terminals and operate a relay by connecting a switch	77
	Module 7: Basic Gates, Combinational circuits, Flip Flops	
2.7.140	Identify different logic gates (AND, OR, NAND, NOR, EX-OR, EX-NOR, NOT ICs) by the number printed on them	79
2.7.141	Verify the truth tables of all logic Gate ICs by connecting switches and LEDs	80
2.7.142	Construct and verify the truth table of all the gates using NAND and NOR gates	84
2.7.143	Use digital IC tester to test the various digital ICs (TTL and CMOS)	91
2.7.144	Construct Half Adder circuit using ICs and verify the truth table	93

Exercise No.	Title of the Exercise	Page No.
2.7.145	Construct Full adder with two Half adder circuit using ICs and verify the truth table	94
2.7.146	Construct the adder cum subtractor circuit and verify the result	95
2.7.147	Construct and test a 2 to 4 Decoder	97
2.7.148	Construct and test a 4 to 2 Encoder	98
2.7.149	Construct and test a 4 to 1 Multiplexer	99
2.7.150	Construct and test a 1 to 4 Demultiplexer	101
2.7.151	Identify different Flip-Flop ICs by the number printed on them	103
2.7.152	Construct and test four bit latch using 7475	104
2.7.153	Construct and test R-S Flip-Flop using IC 7400 with clock and without clock pulse	106
2.7.154	Verify the truth tables of Flip-Flop ICs (RS, D, T, JK, MSJK) by connecting switches and LEDs	108
	Module 8: Electronic Circuit Simulator	
2.8.155	Prepare simple digital and electronic circuits using the software	112
2.8.156	Simulate and test the prepared digital and analog circuits	119
2.8.157	Convert the prepared circuit into a layout diagram	121
2.8.158	Prepare simple, power electronic and domestic electronic circuit using simulation software	123
	Module 9: Counter & Shift Registers	
2.9.159	Construct and test a four bit asynchronous binary counter using IC 7493	127
2.9.160	Construct and test 7493 as a modulus - 12 counter	128
2.9.161	Construct and test a four bit synchronous binary counter using IC 74163	130
2.9.162	Construct and test synchronous Decade counter	132
2.9.163	Construct and test an UP/DOWN synchronous decade counter using 74190 and monitor the output on LEDs	133
2.9.164	Identify and test common anode and common cathode seven segment LED display using multimeter	135
2.9.165	Display the two digit count value on seven segment display using decoder/driver ICs	136
2.9.166	Construct a shift register using RS/D/JK Flip- Flop and verify the result	139
2.9.167	Construct a test four bit SIPO register	142
2.9.168	Construct and test four bit PIPO register	143
2.9.169	Construct and test bidirectional shift register	144

Exercise No.	Title of the Exercise	
	Module 10: Op-Amp & Timer 555 Applications	
2.10.170	Use analog IC tester to test various analog ICs	147
2.10.171	Construct and test various Op-Amp circuits Inverting, Non-inverting, Summing Amplifiers	149
2.10.172	Construct and test Differentiator and integrator	152
2.10.173	Construct and test a zero crossing detector	154
2.10.174	Construct and test instrumentation amplifier	155
2.10.175	Construct and test a Binary weighted and R-2R Ladder type Digital-to-Analog converters	156
2.10.176	Construct and test Astable multivibrator circuit using IC 555	158
2.10.177	Construct and test Monostable multivibrator circuit using IC 555	160
2.10.178	Construct and test VCO (V to F converter) using IC 555	162
2.10.179	Construct and test 555 timers as pulse width modulator	163

LEARNING/ ASSESSABLE OUTCOME

On completion of this book you shall be able to

- Construct, test and verify the input/output characteristics of various analog circuits.
- Plan and construct different power electronic circuits and analyze the circuit functioning.
- Select the appropriate optoelectronic components and verify the characteristics in different circuits.
- Simulate and analyze the analog and digital circuits using Electonic simulator software.
- Identify, place, solder, desolder and test different SMD discrete components and ICs package with due care and following safety norms using proper tools/setup.
- Constrct and test different circuits using ICs 741 Operational Amplifiers & ICs 555 Timer, Linear integrated circuits and Execute the result.

Duraction: 06 Months

SECOND SEMESTER

Week No.	Learning outcome Reference	Professional Skills (Trade Practical) With indicative hours	Professional Knowledge (Trade Theory) with respect to different
27	Construct, test and verify the input/ o u t p u t characteristics of various analog circuits.	Transistor 102. Identify different transistors with respect to different package type, B-E-C pins, power, switching transistor, heat sinks etc. (5 hrs) 103. Test the condition of a given transistor using ohm-meter. (5 hrs) 104. Measure and plot input and output characteristics of a CE amplifier. (7 hrs) 105. Construct and test a transistor based switching circuit to control a relay (use Relays of different coil voltages and Transistors of different ß) (8 hrs)	Construction, working of a PNP and NPN Transistors, purpose of E, B & C Terminals. Significance of a, ß and relationship of a Transistor. Need for Biasing of Transistor. VBE, VCB, VCE, IC, IB, Junction Temperature, junction capacitance, frequency of operation. Transistor applications as switch and amplifier. Transistor input and output characteristics. Transistor power ratings & packaging styles and use of different heat sinks.
28-29	Construct, test and verify the input/ output characteristics of various analog circuits.	Amplifier 106.Construct and test fixed-bias, emitter-bias and voltage devider-bias transistor amplifier. (12 hrs) 107.Construct and Test a common emitter amplifier with and without bypass capacitors (5 hrs) 108. Construct and Test common base amplifier. (5 hrs) 109.Construct and Test common collector/emitter follower amplifier. (5 hrs) 110.Construct and Test Darlington amplifier. (5 hrs) 111. Construct and test a two stage RC Coupled amplifier. (5 hrs) 112. Construct and test a Class B complementary push pull amplifier. (8 hrs) 113. Construct and test class C Tuned amplifier. (5 hrs)	Different types of biasing, various configurations of transistor (C-B, C-E & C-C), their characteristics and applications. Transistor biasing circuits and stabilization Techniques. Classification of amplifiers according to frequency, mode of operation and methods of coupling. Voltage amplifiers -voltage gain, loading effect. Single stage CE amplifier and CC amplifier. Emitter follower circuit and its advantages. RC coupled amplifier, Distinguish between voltage and power amplifier, Push pull amplifier and class C tuned amplifier. Alpha, beta, voltage gain, Concept of dB dBm. Feedback and its types.
30	Construct, test and verify the input/ output characteristics of various analog circuits.	Oscillators 114.Demonstrate Colpitts oscillator, Hartley oscillator circuits and compare the output frequency of the oscillator by CRO. (7 hrs) 115. Construct and test a RC phase shift oscillator circuits. (5 hrs) 116. Construct and test a crystal oscillator circuits. (5 hrs)	Introduction to positive feedback and requisites of an oscillator. Study of Colpitts, Hartley, Crystal and RC oscillators. Types of multi vibrators and study of circuit diagrams.

		117.Demonstrate Astable, monostable, bistable circuits using transistors. (8 hrs)	
31	Construct, test and verify the input/ output characteristics of various analog circuits	Wave shaping circuits 118.Construct and test shunt clipper. (6 hrs) 119.Construct and test series and dual clipper circuit using diodes. (7 hrs) 120.Construct and test clamper circuit using diodes. (5 hrs) 121. Construct and test Zener diode as a peak clipper. (7 hrs)	Diode shunt clipper circuits, Clamping / limiting circuits and Zener diode as peak clipper,uses their applications.
32-33	Plan and construct different power electronic circuits and analyse the circuit functioning.	Power Electronic Components 122. Identify different power electronic components, their specification and terminals. (6 hrs) 123. Construct and test a FET Amplifier. (6 hrs) 124. Construct a test circuit of SCR using UJT triggering. (7 hrs) 125. Identify different heat sinks used in SCRs. (3 hrs) 126. Construct a snubber circuit for protecting SCR use freewheeling diode to reduce back emf. (7 hrs) 127. Construct a jig circuit to test DIAC. (7 hrs) 128. Construct a simple dimmer circuit using TRIAC. (7 hrs) 129. Construct UJT based free running oscillator and change its frequency. (7 hrs)	Construction of FET & JFET, difference with BJT. Purpose of Gate, Drain and source terminals and voltage / current relations between them and Impedances between various terminals. Heat Sink- Uses & purpose. Suitability of FET amplifiers in measuring device applications. Working of different power electronic components such as SCR, TRIAC, DIAC and UJT.
34	Plan and construct different power electronic circuits and analyse the circuit functioning	MOSFET & IGBT 130. Identify various Power MOSFET by its number and test by using multimeter. (5 hrs) 131. Identify different heat sinks used with various power MOSFET devices. (5 hrs) 132. Construct MOSFET test circuit with a small load. (5 hrs) 133. Identify IGBTs by their numbers and test by using multimeter. (5 hrs) 134. Construct IGBT test circuit with a small load. (5 hrs)	MOSFET, Power MOSFET and IGBT, their types, characteristics, switching speed, power ratings and protection. Differentiate FET with MOSFET. Differentiate Transistor with IGBT.
35	Select the appropriate opto electronics components and verify the characteristics in different circuit.	Opto Electronics 135. Test LEDs with DC supply and measure voltage drop and current using multimeter. (5 hrs) 136. Construct a circuit to test photo voltaic cell. (5 hrs) 137. Construct a circuit to switch a lamp load using photo diode. (5	Working and application of LED, IR LEDs, Photo diode, photo transistor, their characteristics and applications.

		hrs) 138. Construct a circuit to switch a lamp load using photo transistor. (5 hrs) 139. Identify opto coupler input and output terminals and measure the quantum of isolation between input/output terminals and operate a relay by connecting a switch. (5 hrs)	Optical sensor, opto-couplers, circuits with opto isolators. Characteristics of LASER diodes.
36	Assemble, test and troubleshoot various digital circuits.	Basic Gates 140. Identify different Logic Gates (AND, OR, NAND, NOR, EXOR, EX-NOR, NOT ICs) by the number printed on them. (6 hrs) 141. Verify the truth tables of all Logic Gate ICs by connecting switches and LEDs. (8 hrs) 142. Construct and verify the truth table of all the gates using NAND and NOR gates. (6 hrs) 143. Use digital IC tester to test the various digital ICs (TTL and CMOS). (5 hrs)	Introduction to Digital Electronics. Difference between analog and digital signals. Logic families and their comparison, logic levels of TTL and CMOS. Number systems (Decimal, binary, octal, Hexadecimal). BCD code, ASCII code and code conversions. Various Logic Gates and their truth tables.
37	Assemble, test and troubleshoot various digital circuits.	Combinational Circuits 144. Construct Half Adder circuit using ICs and verify the truth table. (3 hrs) 145. Construct Full adder with two Half adder circuit using ICs and verify the truth table. (5 hrs) 146. Construct the adder cum subtractor circuit and verify the result. (5 hrs) 147. Construct and Test a 2 to 4 Decoder. (3 hrs) 148. Construct and Test a 4 to 2 Encoder. (3 hrs) 149. Construct and Test a 4 to 1 Multiplexer. (3 hrs) 150. Construct and Test a 1 to 4 De Multiplexer. (3 hrs)	Combinational logic circuits such as Half Adder, Full adder, Parallel Binary adders, 2-bit and four bit full adders. Magnitude comparators. Half adder, full adder ICs and their applications for implementing arithmetic operations. Concept of encoder and decoder. Basic Binary Decoder and four bit binary decoders. Need for multiplexing of data. 1:4 line Multiplexer/Demultiplexer.
38	Assemble, test and troubleshoot various digital circuits	Flip Flops 151. Identify different Flip-Flop (ICs) by the number printed on them. (5 hrs) 152. Construct and test four bit latch using 7475. (5 hrs) 153. Construct and test R-S flipflop using IC7400 with clock and without clock pulse. (5 hrs) 154. Verify the truth tables of FlipFlop ICs (RS, D, T, JK, MSJK) by connecting switches and LEDs. (10 hrs)	Introduction to Flip-Flop. S-R Latch, Gated S-R Latch, D- Latch. Flip-Flop: Basic RS Flip Flop, edge triggered D Flip Flop, JK Flip Flop, T Flip Flop. Master-Slave flip flops and Timing diagrams. Basic flip flop applications like data storage, data transfer and frequency division.

l

39-40	Simulate and analyze the analog and digital circuits using Electronic simulator software.	Electronic circuit simulator 155. Prepare simple digital and electronic circuits using the software (10 hrs) 156. Simulate and test the prepared digital and analog circuits (16 hrs) 157. Convert the prepared circuit into a layout diagram. (10 hrs) 158. Prepare simple, power electronic and domestic electronic circuit using simulation software. (14 hrs)	Study the library components available in the circuit simulation software. Various resources of the software.
41-43	Assemble, test and troubleshoot various digital circuits.	Counter & shift Registers 159. Construct and test a four bit asynchronous binary counter using 7493 (4 hrs) 160. Construct and test 7493 as a modulus-12 counter. (4 hrs) 161. Construct and test a four bit Synchronous binary counter using 74163. (5 hrs) 162. Construct and test synchronous Decade counter. (4 hrs) 163. Construct and test an up/down synchronous decade counter using 74190 and monitor the output on LEDs. (5 hrs) 164. Identify and test common anode and common cathode seven segment LED display using multi meter. (3 hrs) 165. Display the two digit count value on seven segment display using decoder/driver ICs. (4 hrs) 166. Construct a shift register using RS/ D/JK flip flop and verify the result. (5 hrs) 167. Construct and test four bit SIPO register. (5 hrs) 168. Construct and test four bit PIPO register. (5 hrs)	Basics of Counters, types, two bit and three bit Asynchronous binary counters and decade counters with the timing diagrams. 3-bit Synchronous counters and synchronous decade counters. Types of seven segment display. BCD display and BCD to decimal decoder. BCD to 7 segment display circuits. Basics of Register, types and application of Registers.
44-47	Construct and test different circuits using ICs 741operational amplifiers & ICs 555 linear integrated circuits and execute the result.	 Op – Amp & Timer 555 Applications 170. Use analog IC tester to test the various analog ICs. (5 hrs) 171. Construct and test various Op-Amp circuits Inverting, Non-inverting and Summing Amplifiers. (15 hrs) 172. Construct and test Differentiator and Integrator (10 hrs) 173. Construct and test a zero crossing detector. (5 hrs) 174. Construct and test Instrumentation amplifier (10 hrs) 175. Construct and test a Binary weighted and R-2R Ladder type 	Block diagram and Working of Op-Amp, importance, Ideal characteristics, advantages and applications. Schematic diagram of 741, symbol. Non-inverting voltage amplifier, inverting voltage amplifier, summing amplifier, Comparator, zero cross detector, differentiator, integrator and instrumentation amplifier, other popular Op-Amps. Block diagram of 555, functional

	Digital-to-Analog Converters (15hrs.) 176. Construct and test Astable timer circuit using IC 555 (10 hrs) 177. Construct and test mono stable timer circuit using IC 555. (10 hrs) 178. Construct and test VCO (V to F Converter) using IC 555. (10 hrs) 179.Construct and test 555 timers as pulse width modulator (10 hrs) description w.r.t. different configurations of 555 such as monostable, astable and VCO operations for various application.		
48-49	Project work / Industrial visit Broad Areas: 1. Delayed automatic power on circuit. 2. Neon flasher circuit using IC 741 3. UJT act as a relaxation oscillator 4. Up/down synchronous decade counter 5. Portable continuity cum capacitor tester		
50-51	Revision		
52	Examination		

Electronics & Hardware Electronic Mechanic-Transistor Amplifier

Exercise 2.1.102

Identify different transistors with respect to different package type, B-E-C pins, power, switching transistor, heatsink etc

Objectives: At the end of this exercise you shall be able to

- identify transistor by different package type, pin configuration
- identify power, switching transistor, heat sinks etc from the data manuals/books.

Requirements			
Tools/Equipments/Instruments		Materials/Components	
 Trainees tool kit Transistor databook Multimeter/DMM with probes 	- 1 Set - as reqd - 1 No	 Different types of transistor packages from T0-1, T0-5, T0-18, T0-39, T0-72, T0-92, T0-3, T0-66, T0-126, T0-202, T0-220, T0-3P, T0-247 Different Heat sinks suitable for above transistors 	- 15 Nos - 10 Nos

Note:

- 1 The Instructor has to select and label the transistors used for this exercise.
- 2 A minimum of one number in each type of package has to be arranged.
- 3 Label the heat sinks also in the similar way

PROCEDURE

TASK 1: Identification of transistor by different package type, pin configuration, power rating, type of transistor & heat sink

- 1 Pick one of the Labelled transistors from given assorted lot, identify the code number, and record them in Table 1.
- 2 Refer to the Chart 1 semiconductor data book, identify the type of package, all other details as required in Table 1 and record them.
- 3 Refer to the Chart 2, different types of heat sinks used for transistors, compare, verify the details of a transistor in the above Table 1 and select the heat sink suitable for the transistor in hand.
- 4 Record the heat sink type in Table 1 and repeat the above step for remaining labelled transistors.
- 5 Some metallic transistor have notch on its surface. Identify the mark or notch available in transistor. (Terminal adjacent to the notch or mark will be emitter.)

Table 1

					Current 8	& Voltage		
SI.No.	LabelNo	Transistor code number	Transistor package type	Package diagram with pin description	Current rating	Voltage rating	Power rating	Suitable Heatsink type

⁶ Get the work checked by the Instructor.

CHART1

CHART2
Chart showing different types of heatsinks used for transistor packages

Electronics & Hardware: Electronic Mechanic (NSQF Level-5) - Exercise 2.1.102

Electronics & Hardware Electronic Mechanic-Transistor Amplifier

Test the condition of a given transistor using Ohm-meter

Objectives: At the end of this exercise you shall be able to

• test the condition of transistor using ohm meter/multimeter.

Requirements

Tools/Equipments/Instruments

· Trainees tool kit

- 1 Set
- Digital multimeter/Analog multimeter with crocodile clip probes
- 1 Set

Materials/Components

- Transistor assorted types (T0-3, T0-5, T0-66, T0-18, T0-72, T0-92A, 92B, T0-202, T0-220, T0-247)
- Transistor data book

- 10 Nos - as regd

Note:

- 1 The instructor has to arrange a minimum of one number in each type and label the transistors used for this exercise
- 2 Incase, the Analog type multimeter is not available, skip the Task 1 and proceed with Task 2 of this exercise using Digital multimeter.

PROCEDURE

TASK 1: Testing transistor using analog multimeter

- 1 Pick one of the labelled transistor from given assorted lot and enter its number in the Table -1.
- Verify the label number, and other details recorded in the Table 1 of Exercise No.2.1.102. Refer the databook, identify the transistor type, pin diagram and record details in Table 1.

In some power transistor, the metal body itself is connected to the collector terminal. All transistors will not have shield pin.

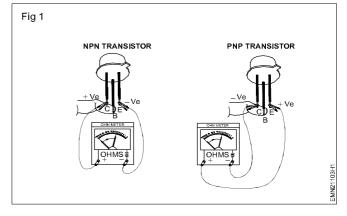
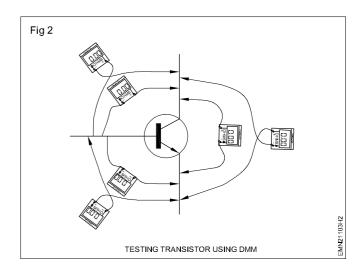


Table 1

					Measure	d resistance	between	
SI.No.	Label No	Code no.of transistor	Package type	Forward/Reverse	B-E	B-C	E-C	Remarks
1				Forward				
2				Reverse				
3				Forward				
4				Reverse				
5				Forward				
6				Reverse				
7								
8								
9								
10								

- 3 Connect crocodile clip probes to the analog multimeter & select ohms range for testing.
 - In using analog multimeter, select resistance range RX100 Ohm, low range may damage low power transistors.
- 4 Identify the transistor terminals as Base, Emitter and Collector.


Testing the transistor using the analog type Ohm meter is shown in Fig 1 for guidance.

- 5 Test resistance value between Base & Emitter terminals in forward and reverse direction by connecting probes as shown in Fig 1 and record readings in Table 1.
- 6 Repeat the above step between Base & collector terminals and record readings.
- 7 Repeat the step between Emitter & collector and record readings.
- 8 Repeat steps 4 to 7 for all the remaining labelled transistors.
- 9 Get the work checked by the Instructor.

Task 2: Testing the condition of transistor using Digital multimeter (DMM)

- 1 Pick one of the labelled transistor from the given lot, enter its number in Table 2.
- Verify the details like transistor type, pin configuration etc recorded in the Table 1 of Ex.No.2.1.102/Refer to the data book, identify all the details required.
- 3 Connect the crocodile clip probe to the DMM and set the selector, switch to the Diode testing position/range.
- 4 Connect the positive test probe of the DMM to the Base (B) terminal and the negative probe to the Emitter (E) of the transistor as shown in Fig 2.
 - For a good NPN transistor, the meter should show between 0.45V to 0.9V and for a PNP transistor, the meter should show "OL" (Over Limit) means infinity.
- 5 Observe the reading displayed on the DMM, record the value in Table 2.
- 6 Keep the positive probe at Base and connect the negative probe to the collector (C) terminal, observe the reading on the DMM, record it in Table 2.
 - For a good NPN transistor the meter should show between 0.45 to 0.9V and for a PNP type transistor, the meter should show "OL" (Over Limit) means infinity.
- 7 Repeat setps 4,5 and 6 with reversed polarities of DMM and record those readings in Table 2.
- 8 Connect the positive probe to the Emitter terminal and negative probe to the Collector (C) of transistor as shown in Fig 2; Record the observations in Table 2.

- 9 Repeat step 8 with reversed polarities of DMM.
- 10 Carry out steps 4 to 9 for all the remaining labelled transistors and record readings in Table 2.
- 11 Get the work checked by the Instructor.

Note:

Compare the resistance values recorded in forward and reverse directions between B-E, B-C and E-C terminals.

Conclude the condition of tested transistor is defective/unserviceable if the resistance value is same on both directions for B-E or B-C junctions, shorted / open junctions show same resistance value in both directions otherwise, the transistor is good/serviceable.

Table 2

		Transistor		Meter reading betw	een the terminal	S	
SI.No.	Lable No NPN/PNP	Code No and type	Direction	Base to emitter	Base to collector	Emitter to collector	Remarks
1			Forward				
2			Reverse				
3			Forward				
4			Reverse				
5			Forward				
6			Reverse				
7			Forward				
8			Reverse				
9			Forward				
10			Reverse				

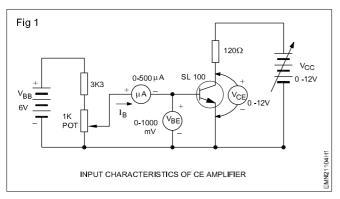
Measure and Plot input and output characteristics of a transistor CE amplifier

Objectives: At the end of this exercise you shall be able to

- measure and plot the input characteristics of a transistor in CE configuration
- measure and plot the output characteristics of a transistor in CE configuration.

Requirements											
Tools/Equipments/Instruments		Materials/Components									
Trainees tool kit		• Tagboard	- 1 No								
 DC milliammeter, 0-100mA DC microammeter, 0-500μA 	- 1 Set - 1 No	Transistors, SL 100,Resistors	- 1 No								
 DC millivoltmeter, 0-1000mV 	- 1 No	120Ω, ¼ W	- 1 No								
 Regulated DC dual power supply 0-30V/2A 	- 1 No	10kΩ, ¼ W 3.3kΩ, ¼ W	- 1 No - 1 No								
Semiconductor data manual	- 1 No	1 kΩ, POT, linear	- 1 No								
Semiconductor data manual	- 1 No	·	-								

PROCEDURE


TASK 1: Measurement and plotting of input characteristics (V_{RF} versus I_{R}) of given transistor as CE amplifier

1 Collect the transistor, identify the number, refer the data book and record the details and condition of the transistor in Table 1.

Table - 1

Label No	Transistor No and type	β or h _{FE} (typical)	Condition from quick tests

2 Construct the circuit as shown in Fig 1.

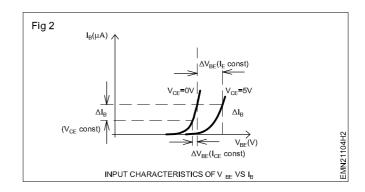
- 3 Switch ON 6V DC supply V_{BB} and adjust 1 K pot such that V_{BF} = 0V.
- 4 Adjust the DC supply for V_{CC} to 0 volt such that $V_{CF} = 0$ volt.
- 5 Increase V_{BE} from zero volt, in steps of 100 mV upto 700 mV; At each setting record value of base current I_{B} in Table 2.

Table - 2

V _{CE} set at 0 volts, constant												
V _{BE} in mV	0	200 mV	300 mV	400 mV	500 mV	600 mV	700 mV					
l _Β in μΑ												

6 Set $V_{BE} = 0$ volts by adjusting the pot; Set $V_{CE} = 6$ volts, repeat step 5 and record readings in Table 3.

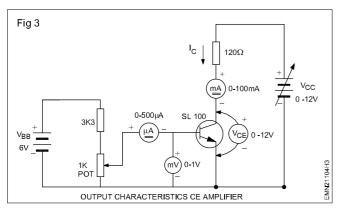
Table - 3


V	0	200	300	400	500	600	700
in mV		mV	mV	mV	mV		mV
I,							
' _в µА							

7 Set V_{BE} = 0 volts; Set V_{CE} = 12 volts, repeat step 6 and record the readings in Table 4.

Table - 4

V _{CE} set at 12 volts constant												
V _{BE}	0	200 mV	300 mV	400 mV	500 mV	600 mV	700 mV					
I _Β μΑ												


- 8 Get the recorded readings checked by the instructor.
- 9 Draw the graph of input characteristics of given transistor in CE configuration by taking the readings recorded in Tables 2,3 and 4 shown in Fig 2. (Mark V_{BE} in X-axis and I_D in Y-axis).
- 10 Get the plotted graph checked by the Instructor.

TASK 2: Measurement and plotting of output characteristics of given transistor as CE amplifier.

Modify the circuit connections of Task 1 to make variations in V_{CE} and observe/measure I_C at different values of I_D as shown in Fig 3.

- 2 Set V_{CC} to 0V such that V_{CE} = 0V and adjust the supply V_{BB} such that I_{B} = 100 μ A.
- 3 Vary V_{CC} such that V_{CE} is increased in steps of 0.2V upto 1V and continue as per the Table 5; observe the output current I_{C} at each step of V_{CE} and record the readings in Table 5.

- 4 Increase I_B to values 200 μ A, 300 μ A, 500 μ A and at each setting repeat step 3; Record the readings in Table 6, 7 and 8 respectively.
- 5 Get your recorded readings checked by the Instructor.
- 6 Draw the graph of output characteristics of given transistor in CE configuration by taking, plotting the readings recorded in Tables 5,6,7 and 8 as shown in Fig 4.
- 7 Get the plotted graph and get it checked by the instructor.
- 8 Calculate the β dc using the formula with recorded readings, find the dc current gain β of the transistor at V_{CE} of 6V. Record the calculation and result inTable 9.
- 9 Compare the calculated value of β in step 8 and value noted from the data book at step 1.

Output characteristics of transistor

Table - 5

I _B set at 100 μA microAmps constant													
$\mathbf{V}_{\mathtt{CE}}$	0.2V	0.4V	0.6V	0.8V	1V	2V	3V	4V	5V	6V	7V	8V	
I _c													

Table - 6

I _B set at 200 μA constant													
V _{CE}	0.2V	0.4V	0.6V	0.8V	1V	2V	3V	4V	5V	6V	7V	8V	
I _c													

Table - 7

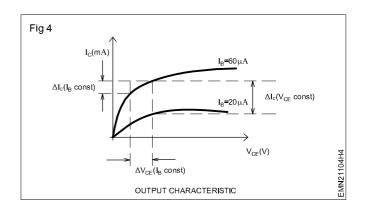

I _B set a	I _B set at 300 μA constant													
V _{CE}	0.2V	0.4V	0.6V	V8.0	1V	2V	3V	4V	5V	6V	7V	8V		
I _c														

Table - 8

I _B set at	I _B set at 500 μA constant													
V _{CE}	0.2V	0.4V	0.6V	V8.0	1V	2V	3V	4V	5V	6V	7V	8V		
I _c														

Table - 9

Current gain, $\beta = \frac{I_C}{I_B}$ $V_{CE} I_B I_c \beta_{dc} I_B I_C \beta_{dc} I_B I_C \beta_{dc}$ 6V 100 μ A 300 μ A 500 μ A	I abi	C - 3									
	Current gain, $\beta = \frac{I_C}{I_B}$										
6V 100μΑ 300μΑ 500μΑ	V _{CE}	I _B	I _c	β_{dc}	I _B	I _c	β_{dc}	I _B	I _c	β_{dc}	
	6V	100μΑ			300μΑ			500μΑ			

10 Get the work checked by the Instructor.

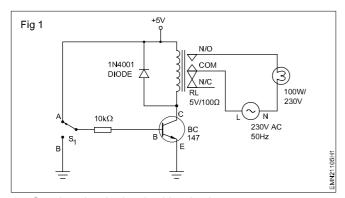
Construct and test a transistor based switching circuit to control a relay (use relays of different coil voltages and transistors of different β)

Objectives: At the end of this exercise you shall be able to

- · construct and test transistor based switching circuit to control a relay
- · construct and test transistor based relay control circuit using different Beta.

Requirements		
Tools/Equipments/Instruments Digital multimeter with probes Trainees tool kit Regulated DC Power supply 0-30V/2A Soldering Iron 25W/230V Transistor -BC 147, SL100 Semiconductor data manual Tools/Equipments/Instruments - 1 Set - 1 Set - 1 No - 2 No - 3 reqd	 Resistor 10 kΩ, ¼ W/CR25 Solder wire Solder flux SPDT switch Connecting wires Diode -1N4001 12V/30mA/10A/1CO Relay 5V/50 mA/10A 1CO Bulb (100W/230V A/C) with holder Twisted pair flexible wire 	- 1 No - 1 No - as reqd - 1 No - as reqd - 1 No - 1 No - 1 No each - 1 No - 1 No

PROCEDURE


TASK 1: Construction and testing of transistor based switching circuit to control a relay

- 1 Collect all the components required, test them and plan the layout of components on the general purpose PCB.
- 2 Identify the transistor number their leads and record the h_{FE} of given transistor and other parameters with reference to the data sheet in Table 1.

Table 1

Code No.of transistor	Туре	I _C	V _{CEO}	V _{CBO}	V _{EBO}	h _{FE}

3 Assemble the circuit as shown in Fig 1.

- 4 Get the circuit checked by the Instructor.
- 5 Keep the switch S₁ in position B.

6 Switch ON the 5V, DC supply and AC mains to the circuit.

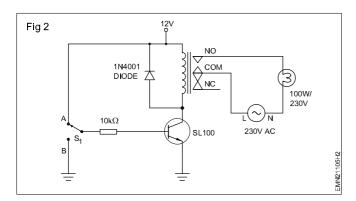
Take care of 230V AC manins supply link.

- 7 Measure voltage at Base and collector terminals with respect to Emitter terminal; Record the readings in Table 2.
- 8 Change the switch to point A, observe the condition of relay and record the observations in Table 2.

Table 2

SI. Switch			tage a	Relay	Status of	
No.	position	Dasc	Collector	condition	bulb	
		(V _{BE})	(V _{CE})			
1	Α					
2	В					

- 9 Switch OFF the DC and AC manis supply.
- 10 Get the work checked by the Instructor.


TASK 2 : Construction and testing of switching circuit to control a relay of higher coil voltage with transistor of different h_{FF}

- 1 Modify the circuit of Task 1 with 12 V relay and transistor SL 100 for switching circuit.
- 2 Identify the transistor leads, find Beta $(h_{\rm FE.})$ and other parameters in the data sheet, record them in Table 3.

Table 3

Code No.of transistor	Туре	I _c	V _{CEO}	V _{CBO}	V _{EBO}	h _{FE}

3 Assemble the circuit as shown in Fig 2 and get it checked by the Instructor.

4 Keep the switch S₁ in position 'B', switch ON the 12 VDC supply and AC mains supply to the circuit.

Safety: Take care of 230 VAC mains supply lines

- Measure voltage at Base, collector terminals with respect to Emitter terminals and record the readings in Task 4.
- 6 Change the switch S₁ to point 'A', measure voltages status of relay, lamp and record the observations in Task 4.

Table 4

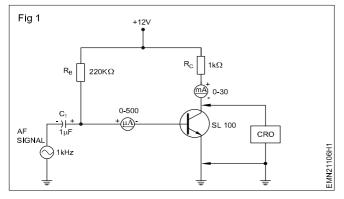
SI.	Switch		tage a	Relay	Status of		
No.	position	Dase	Collector	condition	bulb		
		(V_{BE})	(V _{CE})				
1		Α					
2		В					

- 7 Switch OFF the DC and AC supply to the circuit.
- 8 Get the work checked by the Instructor.

Electronic & Hardware Electronic Mechanic-Transistor Amplifier

Construct and test fixed bias, emitter bias, and voltage divider bias transistor amplifier

Objectives: At the end of this exercise you shall be able to


- · construct and test fixed bias arrangement to transistor amplifier circuit
- · construct and test emitter bias arrangement to transistor amplifier circuit
- construct and test voltage divider bias arrangement to transistor amplifier circuit.

Requirements			
 Tools/Equipments/Instruments Trainees tool kit Digital multimeter with probes CRO, 20 MHz, Dual Trace Regulated DC Power Supply, 0-30V/2A AF signal generator DC micro ammeter 0-500 μA DC miliammeter 0-30 mA 	- 1 Set - 1 No - 1 No - 1 No - 1 No - 1 No - 1 No	 Capacitor 1 μF/25V 10kpf 25μF/25V Resistor/¹/₄ W/CR25 220kΩ 5.1kΩ 1.5kΩ 5.6kΩ 12kΩ 1300 	- 1 No - 2 Nos - 2 Nos - 1 No - 1 No - 2 Nos - 1 No - 1 No
Materials/ComponentsBreadboardTransistor BC 107, SL100	- 1 No - 1 No each	120 Ω 470 Ω 1k Ω • Hook up wires	-1 No - 1 No - 3 Nos - as reqd

PROCEDURE

TASK 1: Construction and testing of fixed bias arrangement for transistor amplifier circuit using BJT

- Collect all the components required and check them for good working condition using multimeter.
- 2 Assemble the circuit as shown in Fig 1.

3 Calculate base current 'I_R' using the formula.

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}}$$

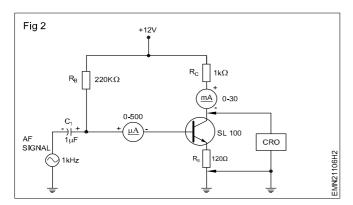
- 4 Now switch ON the DC supply to the circuit and record readings in Table 1 without signal.
- 5 Prepare CRO for measurement and apply AF signal kHz/20mV sine wave from AF signal generator as input.
- 6 Observe and record the values of I_B, I_C and V_{CE} for the fixed bias amplifier circuit in Table-1.

- 7 Compare the calculated values with the observed values.
- 8 Get the values checked by the Instructor.

Note

- 1 We assume that the Amplifier operation is in the active region, and hence $V_{\rm BE}$ = 0.7 V.
- 2 β is the amplification factor of the transistor by which the base current gets amplified.
- 3 β dc refers to current gain, when DC bias voltage is applied.
- 4 Output collector current ' I_c ' = β dc x I_B .
- 5 When transistor is in active region, I_c gradually increases towards higher values. At the same time, V_{CE} decreases from peak towards lower values.
- 6 When saturation is attained by amplifier, I_c goes to peak but V_{cE} drops to less than 0.7V.
- 7 For calculating I_c and V_{ce} , following formulae should be used.

$$V_{ce} = V_{cc} - I_c.R_c$$
 Say $\beta = 100 \& I_C = \frac{V_{cc} - V_{CE}}{R_C}$


Table 1

Input condition	Base Current	Collector	V _{CE}	Voltage across load V _{RL}	Current gain $\mathbf{A}_{_{\mathrm{I}}} = \mathbf{I}_{_{\mathrm{C}}} / \mathbf{I}_{_{\mathrm{B}}}$	$\mathbf{A}_{\mathbf{v}} = \frac{V_{\mathbf{C}}}{V_{in}}$
Without signal						
With input Signal						

TASK 2: Construction and testing of emitter feedback bias amplifier circuit using BJT

1 Modify the circuit as shown in Fig 2.

- 2 Calculate the values of I $_{\rm B}$, I $_{\rm C}$ $\beta_{\rm dc}$ and V $_{\rm CE}$ by using the formulae given in the note and record the values in Table 2.
- 3 Switch ON the 12V DC supply and AF signal generator input to the circuit assembled and measure base current $\rm I_B$, collector current $\rm I_C$, $\rm V_{BE}$ (forwad bias of transistor) and the voltage drops across base resistor $\rm R_B$ the emitter resistor $\rm R_E$, collector resistor $\rm R_C$ and $\rm V_{CE}$ record the observed values in Table 3.

Table 2

Calculated Observed values	Collector Current I _c	Base current I _B	V _{CE}	Current gain Ai (β _{dc})	Volatage gain A _v
Calculated values					
Observed values					

- 4 Prepeare CRO for measurements, connect and observe the peak-to-peak AC signal input from AF signal generators at CH1 and amplified AC signal output of the emitter feedback bias amplifier circuit at CH-2 and record the readings.
- 5 Increase the input A/C signal voltage applied to emitter feedback amplifier gradually and repeat the observations of the parameters given in step 3.
- 6 Note that the collector current 'I_c' remains stable to maintain constant 'Q' operating point of the amplifier.
- 7 Get the values checked by the Instructor.
- 8 Calculate and record the $\rm I_{\scriptscriptstyle C}$ (sat) of the emitter-bias circuit
- 9 Get the values checked by the Instructor

Note:

- 1 Emitter bias is also referred to as emitter feedback back bias (i.e) a portion of the output is given back to the input as feedback.
- 2 In this circuit, the voltage across resistor ' R_E ' is used to offset changes is β_{dc} .
- 3 This type of biasing compensates for the variation in β_{dc} and keeps the 'Q' point fairly stable.
- 4 If $\beta_{\rm dc}$ increases, the collector current increases, which in turn increases the voltage at the emitter.
- 5 This increased emitter voltage (plus the VBE drop of transistor) decreases the voltage across the base-resistor.

6 There fore base current reduces, and hence collector current reduces. This prevents $\rm I_c$ from action varying continuosly.

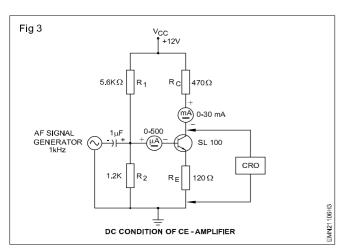
$$I_B = \frac{V_{cc} - \left(V_{BE} + V_E\right)}{R_B}$$

- 7 It partially offsets the original increase in I_c due to increased β_{dc} . Due to feedback only the output ' I_c ' could change the input I_B this maintain stable Q print.
- 8 In emitter-bias, the current 'lc' will be

$$I_c - \beta_{IB}$$
 (i.e) $I_c = \beta$

$$\frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E} \& I_B = \frac{V_{CC} - V_{BE} - I_E R_E}{R_B}$$

Assuming $I_E I_C$; $V_{CE} - (R_C + R_E) I_C$


Table 3

AF Signal Generator - AC input = Sinewave 1kHz/20mV

Value/ signal condition	Base Current	Collector current I _c	Current gain $\beta = \frac{I_c}{I_B}$	V _{BE}	V _{CE}	DRB	Drop across R _E	Drop across R _c
Calculated Value								
Measured Values								
Without Signal								
With signal								

TASK 3: Construction and testing of voltage divider biased transistor CE amplifier

1 Check all the components and assemble the circuit as shown in Fig 3.

- 2 Get the assembled circuit checked by the Instructor.
- 3 Measure and record I_B and I_C in Table 4, calculate current gain β_{dc} and record it.

Table 4

Collector current I _c	Base current I _B	Current gain A _i β _{dc}

- 4 Apply AC input signal of 1 kHz, 20 mV from AF signal generator to the voltage divder biased CE amplifier.
- 5 Prepare the CRO for measurements connect CRO to observe/measure AC signal input to amplifier from AF signal generator to CH-1 and amplified AC signal output of voltage divider bias to CH-2.
- 6 Measure and record the observed values as required in Table 5. Calculate & record Ai and Av of the amplifier observe and record the Input/Output waveforms available on the CRO.

Note:

- In this circuit note that the base of the transistor is biased by voltage divider network made up of R₁ & R₂
- Q point of this circuit lies half way along the transistor's load line.
- $V_{ce} = V_{cc} I_c (R_c + R_e)$ and $I_c = \beta x I_B$
- RB << $(\beta+1)$ R_E and R_B = R₁ // R₂.

Table 5

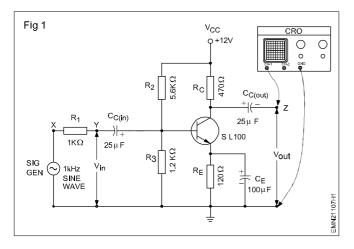
Signal Condition	Base current	Collector current	$oldsymbol{eta}_{ ext{dc}}$	Vol	tage dı	rop Acı	oss	V _{BE}	V _{CE}	Voltage gain	
	I _B	в I _с		R,	R ₂	R _c	R _E			$A V = \frac{V_{Load}}{V_{in}}$	
Without signal											
With signal											

7 Get the work checked by the Instructor.

Electronics & Hardware Electronic Mechanic-Transistor Amplifier

Construct and test a CE amplifier with and without emitter bypass capacitors

Objectives: At the end of this exercise you shall be able to


- construction and find the effect of emitter bypass capacitor on amplifier gain and input impedance
- plot the frequency response of CE amplifier with by pass capacitor.

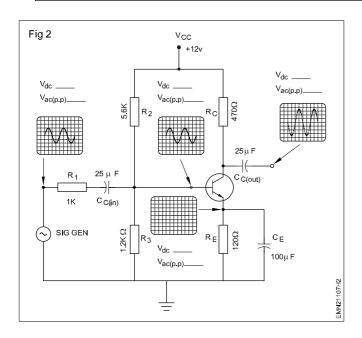
Requirements					
Tools/Equipments/Instruments		Materials/Components			
 Trainees tool kit CRO, 20 MHz Dual trace AF Signal generator Regulated DC power supply, 30V/2A Digital multimeter with probes 	- 1 Set - 1 No - 1 No - 1 No - 1 No	 Hook-up wires Breadboard Resistor/½W/CR25 1kΩ,1.2 kΩ, 5.6 kΩ 120Ω, 470Ω Capacitors 25 μF/25V 4.7 μF/25V 100 μF/25V 470 μF/25V 	- as reqd - as reqd - 1 No each - 2 Nos - 1 No - 1 No - 1 No		

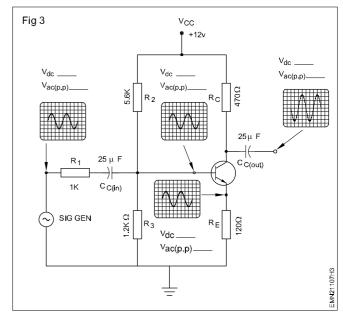
PROCEDURE

TASK 1: Construction and testing of the effect of bypass capacitor in CE amplifier

1 Collect all the components, test them assemble the circuit as shown in Fig 1 on breadboard. Capacitor C_E is the emitter by pass capacitor.

- 2 Get the circuit connections checked by the Instructor.
- 3 Preapare the CRO for measurements and switch 'ON' 12V DC supply to the circuit, adjust the output of the signal generator at 1kHz such that V_{out} is large enough and undistorted.
- 4 Record the peak to peak values of input V_{in} and output V_{out} in Table 1; Calculate and record the voltage gain A_{v} of the amplifer.


- 5 Find the input impedance Z_{in} and output impedance Z_{out} of the amplifier using the same procedure as followed for Task 2 of Ex. 2.1.106; Record values in Table 1.
- 6 Measure and record the AC and DC voltages at various points of the amplifier in Fig 2 and Fig 3.
- 7 Switch off DC supply to the circuit. Disconnect 100 μ F capacitor connected across the 120 Ω emitter resistor.

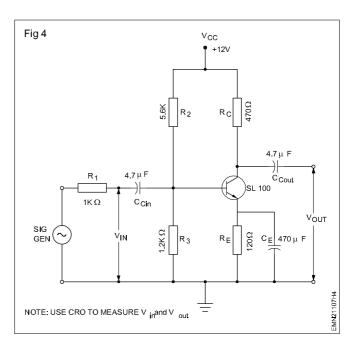

Now the input $V_{\rm in}$ may show higher value due to increased $Z_{\rm in}$ without the bypass capacitor. Do not alter the output level / frequency of the signal generator.

- 8 Switch 'ON' DC supply to the circuit, repeat steps 4 and record readings in Table 1.
- 9 Measure and record the AC and DC levels at various points of the amplifier without the bypass capacitor in Fig 3.
- 10 Switch-OFF DC supply to the circuit and from the recorded readings, complete the sentences given in record sheet.
- 11 Get the work checked by the Instructor.

Table - 1

Condition	V _{in(peak-to-peak)}	V _{out(peak-to-peak)}	A _v	Z _{in}	Z _{out}
With bypass capacitor C _E connected across R _E					
Without bypass capacitor C _E					

12 Complete the sentences given below with the readings recorded in Table 1.


When the emitter bypass capacitor was removed

a) the voltage gain of the amplifier decreased by _______%.
b) the input impedance of the amplifier ______ by _______%.

TASK 2: Plotting the frequency response of CE amplifier

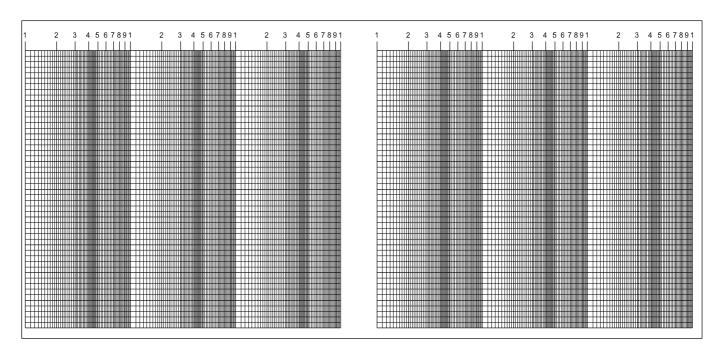
- 1 Modify the circuit to confirm to the schematic diagram as given in Fig 4.
- 2 Set the output of the signal generator to sine wave, 1 KHz. Adjust the input voltage to the transistor $V_{in} = 200 \text{mV}$.
- 3 Record the set input level V_{in} and corresponding value of output V_{out} of the amplifier in the appropriate row of the Table 2.
- 4 Vary the output frequency of the signal generator above and below the set frequency of 1 kHz in steps as given in Table 2. At each step record the output of amplifier, V_{out}.
- 5 Calculate and record the voltage gain A_v of the amplifier at different frequencies.
- 6 Change the value of $C_{C(in)}$ to 4.7 μF and repeat steps 2 to 5

- 7 Plot the graph of frequency (f_{in}) versus voltage gain A_{v} for the readings taken with the capacitor values of 0.047 and 4.7 μ F in Table 2. Find and mark the low frequency cut off/half power point on the graph.
 - The cut off/half power point is 0.707 ${\rm A}_{\rm v}$ at the mid-band gain.
- 8 Switch OFF DC supply to the circuit; change the value of the input coupling capacitor $C_{C(in)}$ to 100 μ F.
 - $C_{_{C(in)}}$ is made 100µF to eliminate the effect of the coupling capacitor while finding the effect of $C_{_{\rm F}}$ on the frequency response.
 - Table 2 Frequency response for different C_{cin}

Set value of V_{in} = _____ at

f _{in} = 1 kHz	$f_{in} = 1 \text{ kHz}$ $C_E = 470 \mu\text{F}$ $C_{cout} = 4.7 \mu\text{F}$			
frequency	C _{cin} = 0.047 μF		C _{cin} = 4.7 μF	
f _{in} H _z	V _{out}	A _v	V _{out}	A _v
10				
20				
30				
100				
200				
400				
800				
1000				
1200				
1400				
1600				
2000				
3000				

- 9 Change value of the bypass capacitor C_E to 0.47 μ F and repeat steps 2 to 5, record readings in Table 3.
- 10 Change the value of the bypass capacitor C_E back to $470\mu F$ and repeat steps 2 to 5.
- 11 Find the dominant lower cut off frequency of the amplifier with $C_{C(in)}$ = 4.7 μ F and C_E = 470 μ F.


The effect of $C_{c(out)}$ on the amplifier frequency response is not given in the procedure as the effect of $C_{c(out)}$ is almost same as that of $C_{c(in)}$.

Set value of $V_{in} = \underline{\qquad}$ at $f_{in} = 1 \text{ kHz} C_{cin} = 100 \mu\text{F} C_{cout} = 4.7 \mu\text{F}$					
frequency	C _E = 0.4	7 μF	C _E = 470 μF		
f _{in} H _z	V _{out}	A _v	V _{out}	A _v	
10					
20					
30					
100					
200					
400					
800					
1000					
1200					
1400					
1600					
2000					
3000					

12 Get the work checked by the Instructor.

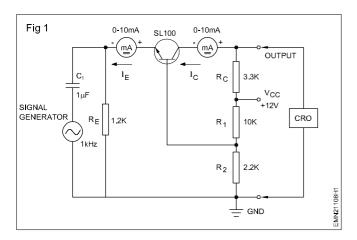
Graph 1 Frequency response with $C_{cin} = 0.047$ capacitor

Graph 2 Frequency response with C $_{\mbox{\tiny cin}}$ = 4.7 μ F

Electronics & Hardware Electronic Mechanic-Transistor Amplifier

Construct and test a Common Base amplifier

Objectives: At the end of this exercise you shall be able to


- construct a common base amplifier and measure,
 - current gain, of the amplifier
 - voltage gain of the amplifier
 - input-impedance of the amplifier
 - output-impedance of the amplifier
 - power gain of the amplifier
- · compare the phase relationship between Input and Output of common base amplifier.

Requirements				
Tools/Equipments/Components		Materials/Components		
 Trainees tool kit DC milliammeter, 0-10mA Regulated DC power supply 0-30V/2A CRO, 20 MHz Dual trace AF signal generator Multimeter /DMM with probes 	- 1 Set - 1 No - 1 No - 1 No - 1 No - 1 No	 Breadboard Transistor, SL 100 Resistors/½ W/CR25 1kΩ 1.2kΩ 2.2kΩ 3.3kΩ 6.8kΩ 10kΩ Capacitors 25 μF/25V 100 μF/25V 	- 1 No - 2 Nos - 1 No	

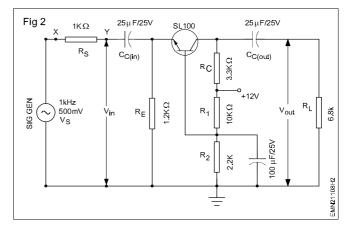
PROCEDURE

TASK 1: Construction and measurement of Ai, A_v , Z_{in} and Z_{out} in CB amplifier

1 Collect all the required components, test and assemble the common base amplifier as shown in Fig 1.

- 2 Get the assembled circuit checked by the Instructor.
- 3 Switch ON 12V DC supply to the circuit, measure and record the dc voltage levels of $V_{\rm RE}, V_{\rm BE}, V_{\rm CB}$ and $V_{\rm CE}$;

From the readings, conclude whether the transistor is working or not.


Record the values of input current $I_{\rm E}$ and output current $I_{\rm C}$. Calculate and record the current gain Ai of the common base amplifier in Table 1 using the formula

$$A_i = \frac{I_c}{I_E}$$

4 Calculate and record values of, input impedance $Z_{\rm in}$, output impedance $Z_{\rm out}$, voltage gain $A_{\rm v}$ in Table 2.

Use the value of Ai found in step 3. Find the value of r'_{e} using the formula, $r'_{e} = 25 \text{mV/l}_{e}$.

5 Modify the circuit as shown in Fig 2 and prepare the CRO for measurements.

- 6 Set the output of the Signal generator to Sine wave, 1 kHz at 500 mV. Measure and record V_{in} and V_{out} of the amplifier. Calculate and record the voltage gain A_{v} of the amplifier in Table 3; draw the input and output waveforms in the graph sheets.
- 7 Measure and record the input impedance Z_{in} and output indepence Zout of the common base amplifier in the same way as found in common emitter amplifiers Ex.No. 2.1.107.
- 8 Calculate and record the power gain of the common base amplifier using the above readings.
- 9 Compare the calculated readings at step 4 and the actual values measured.
- 10 Get the work checked by the Instructor.

Table 1
Current gain A, of CB amplifier

V _{BG}	V _{BE}	V _{CB}	V _{CE}	Condition of transistor	I _E	I _c	Current gain A, (or) a
							•

Table 2
Calculated values using given circuit component values

r' _e	Z _{in}	Z _{out}	A _v	A _p

Table 3

Frequency set to 1 kHz, sine wave

V _{in}	V _{out}	Voltage gain A _v	Input impedance Z _{in}	Output Impedance Z _{out}	Power gain A _P

Graph of Input/output phase relationship

Note: Make rough sketches of wave-forms using pencil.

Amplifiers input waveform	Amplifiers output waveform	Remarks on input-output phase relationship

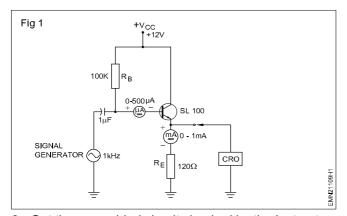
TASK 2: Comparison of phase relationship between input and output

- 1 Adjust the signal generator output for maximum undistorted $V_{\mbox{\tiny out}}$.
- 2 Prepare the CRO for measurement and connect Ch-1 of CRO at input point (across signal generator) and Ch-2 at the output point (across R₁).
- 3 Switch 'ON' 12V DC supply to the circuit, observe and sketch the waveform in graph sheet as in Table 4.
- 4 Record the remarks on the phase relationship between input and output waveforms. (Inphase/out of phase)
- 5 Get the work checked by the Instructor.

Electronics & Hardware Electronic Mechanic-Transistor Amplifier

Construct and test a Common Collector/Emitter Follower amplifier

Objectives: At the end of this exercise you shall be able to


- construct a common collector/Emitter Follower amplifier and measure current gain, voltage gain of Emitter Follower amplifier
- · Compare input output phase relationship of Emitter Follower amplifier
- measure input impedance Z_{in},output impedance Zout and power gain of Emitter Follower amplifier.

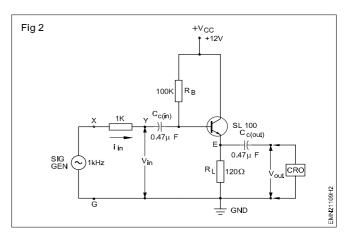
Requirements			
Tools/Equipments/Instruments	Materials/Components		
 Trainees tool kit DC microammeter 0-500 µA DC milliammeter 0-1 mA Regulated DC power supply 0-30V/2A A.F Signal generator CRO, 20MHz-Dual trace Multimeter / DMM with probes 	- 1 Set - 1 No - 1 No - 1 No - 1 No - 1 No - 1 No	 Breadboard Transistor, SL100 or equivalent Resistors/½ W/CR25 120Ω 100kΩ 1kΩ Preset, 470Ω Capacitors, 0.47 μF/25V 	- 1 No - 1 No - 1 No - 1 No - 1 No - 2 Nos

PROCEDURE

TASK 1: Construction and measurement of current gain and voltage gain of emitter follower

1 Collect all the components, test and assemble the emitterfollower circuit as shown in Fig 1, on breadboard.

- 2 Get the assembled circuit checked by the Instructor.
- 3 Measure and record the values of I_B and I_E , in Table 1. Assuming $I_C \approx I_E$, calculate and record the β of the transistor using the formula in Table 1.


$$\beta \approx \frac{I_{\text{E}}}{I_{\text{B}}} \approx \frac{I_{\text{C}}}{I_{\text{B}}}$$

4 Calculate and record the theoretical values of voltage gain A_{v} , input impedance Z_{in} , output impedance Z_{out} and current gain A_{i} of the amplifier in Table 2.

[To calculate the value of ${\rm r'}_{\rm e}{\rm use}\,$ the formula,

$$r_e' = \frac{25mV}{I_E}$$
]

5 Modify the assembled circuit as shown in Fig 2. Get the correctness of the assembled circuit checked by the Instructor.

- 6 Connect the signal generator to the input of the emitter follower amplifier. Set the signal generator output to sine wave, 1 kHz.
- 7 Adjust the signal generator output level such that the AC input $V_{in(p-p)} = 500$ mV. Measure and record the corresponding output $V_{out(p-p)}$ of amplifier in record sheet Table 3.
- 8 From the measured values of V_{in} and V_{out}, calculate and record the voltage gain A_v, of the circuit.
- 9 Compare the values of calculated voltage gain A_v of the amplifier in step 4 and that found in step 8. Record the difference in Table 3.

Table - 1

l _B	l _E	Current gain $A_i = I_E/I_B \approx \beta$

Table - 2
Values calculated using circuit component values

\mathbf{A}_{v}	Z _{in}	Z _{out}	A _i	r' _e

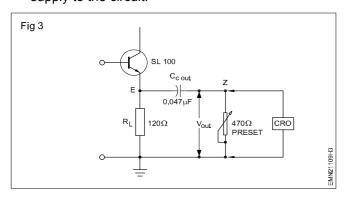
Table 3 (a) Measured value of A

Frequency set to 1 KHz

$V_{out(p-p)}$	A _v
	V _{out(p-p)}

- 10 Get the work checked by the Instructor.
- (b) Difference between calculated (at step-4) and measured value of A, (at step-8):-

TASK 2: Measure input and output impedance of emitter follower


- 1 Set the output of the signal generator to sine wave, $1\,\mathrm{kHz}$, $500\,\mathrm{m\,V_{(p-p)}}$ in Fig. 2 and record $\mathrm{V_{in}}$ and $\mathrm{V_{out}}$ levels in Table 4.
- 2 Measure voltages V_{xG} and V_{yG} on either side of the 1K Ω resistor. Record readings in the record sheet at Table 4.
- 3 From the recorded values of V_{XG} and V_{YG} , calculate the input signal current I_{in} to the amplifier using Ohms law as given below,

$$I_{in} = \frac{V_{XG} - V_{YG}}{1k\Omega}$$

4 From the values V_{in} and I_{in} , calculate and record the input impedance Z_{in} using the formula

$$Z_{in} = \frac{V_{in}}{I_{in}}$$

5 Connect a 470Ω preset across the output of the amplifier as shown in Fig 3. Keep the preset in the maximum resistance position before switching ON DC supply to the circuit.

Precaution: Since there is no limiting resistor in the collector, if the preset is set at zero or low resistance heavy current may damage the transistor.

6 Adjust the preset until V_{out} is half the value measured at Step 1 and record the input & output waveforms in graph sheet

Do not adjust the output level of signal generator set at step 1 of this task.

- 7 Switch OFF DC supply to the circuit. Take out the preset from the circuit without disturbing its adjusted position.
- 8 Measure the adjusted resistance value of the preset and record it as the amplifier's output impedance Z_{out} in Table 4.
- 9 From the values recorded, calculate and record, current gain A₁, and power gain A_P of the amplifier, using the formulae

$$A_i = A_V \frac{Z_{in}}{R_E}$$

$$P_{in} = \frac{V_{in}^2}{Z}$$

$$P_{out} = \frac{V_{out}^2}{R_{out}}$$

Power gain of amplifier A $_{P} = \frac{P_{out}}{P_{in}}$

Power gain A_P in decibel = $10 \log \frac{P_{out}}{P_{in}}$

Frequency set to 1kHz

Table - 4

$V_{in(p-p)}$	V _{out(p-p)}	V _{xg}	V _{YG}	I _{in}	Input impedance Z _{in} of amplifier	Output impedance Z _{out} of amplifier
500 mV						

4 Power gain A_o of emitter follower/CC amplifier in dB:

10 Get the work checked by the Instructor.

TASK 3: Comparison of phase relationship between the input and output of emitter follower amplifier.

1 Find the phase relationship between the input and output of the emitter follower in the same way as done for common emitter amplifier in Exercise 2.1.107 or Ex. No. 2.1.108

Graph of Input and output phase relationship.

2 Get the work done by the Instructor.

Amplifiers input wave-form	Amplifiers Amplifiers output wave-form	

Electronics & Hardware Electronic Mechanic-Transistor Amplifier

Construct and test a Darlington amplifier

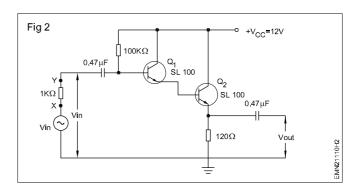
Objectives: At the end of this exercise you shall be able to

- construct Darlington amplifier and measure current gain and voltage gain
- · Compare the input output phase relationship
- measure input and output impedance and calculate power gain of darlington amplifier
- compare the phse relationship.

Requirements			
Tools/Equipments/Instruments		Materials/Components	
 Trainees tool kit DC microammeter 0-100µA DC milliammeter 0-1mA Regulated DC power supply, 0-30V/2A AF Signal generator CRO, 20 MHz- Dual trace Multimeter/DMM with probes 	- 1 Set - 1 No - 1 No - 1 No - 1 No./batch - 1 No./batch - 1 No	 Breadboard Transistor, SL100 or equivalent Resistors/½ W/CR25 120Ω 150kΩ, 10kΩ, 1kΩ POT, 470Ω, 1/2W Capacitors, 0.47 μF/25V 1μF/25V 	- 1 No - 2 Nos - 1 No - 2 Nos - 1 No - 1 No - 2 Nos - 1 No

TASK 1(a): Measurement of current gain and voltage gain

1 Collect all the components, test them and assemble the Darlington amplifier circuit as shown in Fig 1.



- 2 Get the assembled circuit checked by the Instructor.
- 3 Measure and record the values of \mathbb{I}_B at base and \mathbb{I}_E at Emitter of transistor-Q1 and \mathbb{I}_E , at emitter of transistor-Q2 in Table 1. Assuming $\mathbb{I}_C \approx \mathbb{I}_E$, calculate and record the current gain of the transistor using the formula,

$$\begin{array}{ccc} \beta dc & \mathbb{I}_{\text{E2}} \\ \text{current gain} = & & \\ & \mathbb{I}_{\text{B1}} \end{array}$$

4 Using the value of I_E and current gain from step 3, calculate and record the theoretical values of voltage gain A_v , input impedance Z_{in} , output impedance Z_{out} and current gain A_i of the amplifier in Table 2.

5 Modify the assembled circuit as shown in Fig 2. Get the correctness of the wired circuit checked by the instructor.

- 6 Connect the signal generator to the input of transistor Q1 and set the signal generator output to sine wave, 1kHz.
- 7 Adjust the signal generator output level such that the AC input $V_{\text{in}(p-p)}$ = 500 mV_{p-p}. Measure and record the corresponding output $V_{\text{out}(p-p)}$ of amplifier in Table 3
- 8 From the measured values of $V_{\rm in}$ and $V_{\rm out}$, calculate and record the voltage gain $A_{\rm V}$ of the circuit in Table 3.
- 9 Compare the values of calculated voltage gain A_v of the amplifier in step 3 and that found in step 8. Record the difference in the space provided.

1 Table - 1

Q ₁ I _{B1}	Q ₁ I _{E1}	$Q_2 I_{E2}$	Current gain $A_{i} = \mathbf{I}_{E2}/\mathbf{I}_{B} \approx \beta$

a) Observation to obtain $\mathbf{A}_{_{\!\!\!\!\mbox{\tiny V}}}$ the darlington amplifier practically

Frequency set to 1 KHz

V _{in(p-p)}	V _{out(p-p)}	A _v
500 mv		

(b) Difference between calculated (at step-3) and measured value of A_v (at step-7): Table - 2

Values calculated using circuit component values

A _v	Z _{in}	Z _{out}	A _i	r' _e

10 Get the work checked by the Instructor.

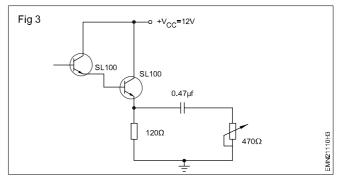
TASK 1(b): Measurement of input and output impedance and calculation of power gain for darlington amplifier

- 1 Set the output of the signal generator to sine wave, 1 kHz, 500 m $V_{in(p-p)}$ in Fig. 2 and record V_{in} and V_{out} levels in Table 4.
- 2 Measure voltages V_{xg} and V_{yg} on either side of the 1K resistor. Record readings in Table 4.
- 3 From the recorded values of V_{XG} and V_{YG} , calculate the input signal current I_{in} to the amplifier using Ohms law as given below,

$$I_{in} = \frac{V_{XG} - V_{YG}}{1k\Omega}$$

4 From the values V_{in} and i_{in} , calculate and record the input impedance Z_{in} using the formula

$$Z_{\text{in}} = \frac{V_{\text{in}}}{I_{\text{in}}}$$


5 Connect a 470Ω preset across the output of the amplifier as shown in Fig 3. Keep the preset in the maximum resistance position before switching ON DC supply to the circuit.

Since there is no limiting resistor in the collector, if the preset is set at zero or low resistance heavy current may damage the transistor.

6 Adjust the preset until V_{out} is half the value measured at Step 1.

Do not adjust the output level of sig. gen. set at step 1 of this task.

7 Switch OFF DC supply to the circuit. Take out the preset from the circuit without disturbing its adjusted value.

- 8 Measure the adjusted value of the preset and record it as the amplifier's output impedance Z_{out} in Table 4.
- 9 From the values recorded calculate and record, current gain A_i, and power gain A_p of the amplifier, using the formulae

$$A_I = A_V \frac{Z_{In}}{R_E}$$

$$P_{ln} = \frac{V_{ln}^2}{Z_{ln}}$$

$$P_{out} = \frac{V_{out}^2}{R_{out}}$$

Power gain of amplifier A $_{p} = \frac{P_{out}}{P_{in}}$

Power gain A_P in decibel = $10 \log \frac{P_{out}}{P_{in}}$

Table - 4

Frequency set to 1 kHz

V _{in(p-p)}	V _{out(p-p)}	V _{XG}	V _{YG}	I _{in}	Input impedance Z _{in} of amplifier	Output impedance Z _{out} of amplifier
500 mV						

10 Get the work checked by the Instructor.

TASK 2: Compare the phase relationship between input and output of darlington amplifier

- 1 Draw the sketch of input & output waveform on graoh sheet.
- 2 Find the phase relationship between the input and output of the emitter follower in the same way as done for common emitter amplifier in Exercise 2.1.106.
- 3 Write remark on input and output phase relationship.

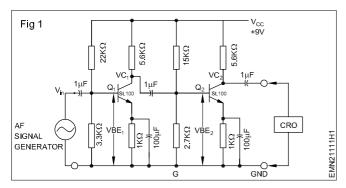
Amplifiers input wave-form	Amplifiers output wave-form	Remarks on input-output phase relationship

4 Get the work checked by the Instructor.

Electronics & Hardware Electronic Mechanic-Transistor Amplifier

Construct and a two stage test RC-coupled Amplifier

Objectives: At the end of this exercise you shall be able to


- construct and test two stage amplifier using RC coupling
- · observe the frequency response of RC coupled amplifier.

Requirements			
Tools/Equipments/Instruments		Materials/Components	
 Trainees tool kit CRO, 20 MHz Dual trace AF Signal generator Regulated DC power supply 0-30V/2A Semiconductor data manual 	- 1 Set - 1 No - 1 No - 1 No - as reqd	 Breadboard Transistor SL 100 Resistor ¼ W/CR25 5.6 kΩ 1kΩ 3.3 kΩ, 22 kΩ 15 kΩ, 2.5 kΩ Capacitor 1 μF/25V Hook up wire Patch cords 	- 1 No - 2 Nos - 2 Nos - 2 Nos - 1 No eac - 1 No eac - 3 Nos - 2 Nos - as reqd - as reqd

PROCEDURE

TASK 1: Construction and testing of 2 stage RC coupled amplifier

- 1 Collect all the components, identify the base, emitter and collector pins of given transistors and test for their good working condition.
- 2 Assemble the RC coupled amplifier on breadboard as shown in Fig 1.

3 Get the assembled circuit checked by the Instructor.

- 4 Switch ON 9 VDC supply to the assembled circuit, measure the DC levels at different test points V_{BE} , V_{CE} , V_{BE2} , V_{CE2} (of both transistors) shown in Fig 1; record the measured voltages in Table 1.
- 5 Connect the A.F. signal generator at the input of the assembled amplifier; set the output of the signal generator at 20 mV, 1 kHz, sinewave.
- 6 Preapre the CRO for measurements, measure and record the output of each stage in Table 2.
- 7 From the recorded readings find and record the gain of each stage and the overall voltage gain of the cascaded amplifier.
- 8 Vary the output frequency of the signal generator between 20 Hz to 20 kHz in steps as given in Table 3 and record overall gain of the amplifier at different frequency settings in Table 3.
- 9 Plot the graph of frequency versus voltage gain and mark the low frequency cut-off (f_{LC}) and high frequency cut-off (f_{HC}) points on the graph.

Table 1 Vin = 9V DC

	$\operatorname{Clevels}$ Transistor Q_2 (DC levels)		Transistor Condition	
V _{BE1}	V _{CE1}	V _{BE2} V _{CE2}		ON/OFF

Table 2 V_{in} = 20 mV, F = 1kHz, sinewave

Amplifier-1 stage output Voltage	Amplifier-2 stage output Voltage	Amplifier output waveform on CRO
V _{c1} - Gnd	V _{c2} - Gnd	

 $\label{eq:Vin} \textbf{Table 3} \\ \textbf{V}_{\text{in}} \textbf{= 20mV Oberservation of frequency response of RC coupled amplifier}$

SI No.	Input frequency	V _o	$\begin{array}{c} \textbf{Voltage} \\ \textbf{Gain} = \frac{V_o}{V_{in}} = A_V \end{array}$
1	10Hz		
2	50Hz		
3	100Hz		
4	200kHz		
5	500kHz		
6	1kHz		
7	2kHz		
8	5kHz		
9	10kHz		
10	15kHz		
11	20MHz		

¹⁰ Get the working of the circuit and the recorded readings checked by the Instructor.

Electronics & Hardware Electronic Mechanic-Transistor Amplifier

Construct and test class-B complementary push-pull amplifier

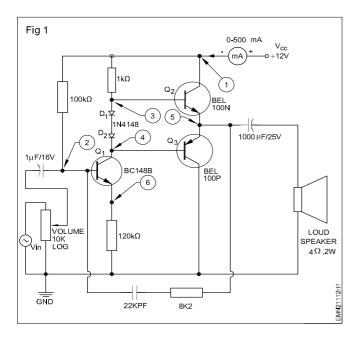
Objectives: At the end of this exercise you shall be able to

- construct and test a Class B complementary-symmetry push-pull amplifier circuit
- · test the amplifier with AF signal input and loudspeaker output.

Requirements			
Tools/Equipments/Instruments Trainees tool kit CRO, 20 MHz - Dual trace AF signal generator Regulated DC power supply 0-30V/2/ Multimeter /DMM with probes Ammeter 0-500 mA MC panel type Soldering iron 25W/230V Materials/Components Transistors 100N or 100P or equivalent	- 1 No - 1 No - 1 No - 1 No each	 General purpose PCB Capacitors 25VDC wkg 1000 μF 22 KpF 1μF Resistors ¼ W/CR25 100 kΩ 1kΩ 120Ω Potentiometer 10kΩ,LOG 8.2 kΩ Loudspeaker - 8Ω/5W Rosin cored solder 	- 1 No - 3 regd
BC 148B Transistor data sheet	- 1 No - as reqd	Hook up wire/connecting wires	- as reqd

PROCEDURE

TASK 1: Construction and testing of a class-B complementary symmetry push-pull audio amplifier


- 1 Collect all the components, identify the base emitter and collector leads of given transistors and test them.
- 2 Plan the layout of components and assemble the complementary push pull amplifier as shown in Fig 1 on the general purpose PCB.
- 3 Connect a 0-500mA DC current meter in series with the 9 V regulated DC supply to the assembled circuit as shown in Fig 1. Switch ON DC supply to the circuit.

If current meter shows more than 50mA, switch-off DC supply and consult your instructor.

- 4 Measure the current drawn and the dc voltage levels at different test points of the circuit in Table 2.
- 5 From the recorded readings, calculate the DC current drawn by each stage. Get it checked by Instructor.
- 6 Feed a 100 mV, 1 kHz sine wave from AF signal generator to the input of the amplifier.

If the output of speaker is feeble, increase the input signal level suitably by adjusting the volume control.

- 7 Prepare the CRO for measurements and verify the input and output at each transistor to confirm amplification.
- 8 Measure and record the ac voltage levels (peak-to-peak) at the output of each stage using CRO in Table 3.
- 9 From the recorded readings calculate the overall voltage gain, efficiency of the amplifier and output power.
- 10 Vary the output frequency of the signal generator between 20 Hz and 20kHz and record the 3dB low frequency cut off(f_{Lc}) and high frequency cut-off(f_{Hc}) on a graph sheet.
 - Check the audiability of loud speaker.
- 11 Get the working of the amplifier and the recorded readings checked by the Instructor.

Table 1 Transistor specifications

Transistor type number	NPN or PNP	Package type	Leads diagram	β _{dc} Typ	V _{dc} Max	I _c Max	P _D	Application
BC 100P								
BC 100N								
BC 148B								

Table 2

Current		DC	voltag	je level	s at tes	t point	S
Without signal With max signal		Supply V _{cc}	V _{B1}	V _{B2}	V _{B3}	V _{E1}	V _{E2}

Table 3 Total circuit current drawn by the cascaded amplifiers with input ac signal:

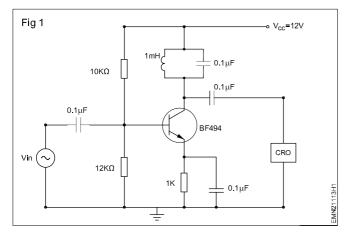
	AC vo	Overall voltage gain			
Input	Collector of Q ₁	Emitter of Q ₂	Emitter of Q ₃	Speaker	$A_V = \frac{V_{out}}{V_{in}}$

Effi	cier	CV	cal	cul	latio	n :-
	O.C.		ou.	ou.	uuu	

Output power (P_o) =
$$\frac{V_o^2}{R_L}$$

Efficiency =
$$\frac{P_o}{P_{DC}} \times 100$$

Construct and test Calss C Tuned Amplifier


Objectives: At the end of this exercise you shall be able to

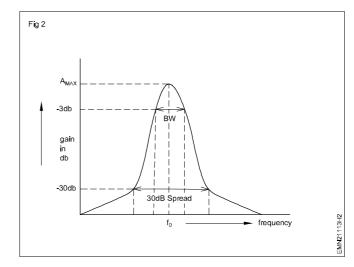
construct and test a Tuned Amplifier and plot the frequency response.

Requirements				
Tools/Equipments/Instruments		Materials/Components		
 Function generator (1Hz to 1 MHz) 	- 1 No	Transistor BF 494Resistors ¼ W/CR25	- 1 No	
CRO 0-20 MHz Dual channel	- 1 No	10 k Ω , 12 k Ω , 1 k Ω	- 1 No each	
Trainees tool kit	- 1 Set	 Inductor, 1mH 	- 1 No	
 Multimeter / DMM with probes 	- 1 No	 Capacitor 0.1 µF/25V 	- 4s Nos	
 Regulated DC power supply 0-30V/2A 	- 1 No	Capacitor 1 nF	- 1 No	
		Breadboard	- 1 No	
		 Hookup wires 	- as regd	

PROCEDURE

- 1 Collect the required components, check them and assemble the components on breadboard as shown in Figure 1.
- 2 Measure V_B, V_C, V_E of the transistor and record in Table 1
- 3 Connect the FG at the input terminals and CRO in the output terminals.
- 4 Prepare CRO for measurements, connect one channel to FG/AF generator and other channel to O/P of amplifier a shown in Fig 1.

- 5 Apply 1 kHz -20 mV, sinewave to the input of the circuit and measure the output voltage (P-P) and record in Table 2.
- 6 Vary the frequency in steps and keep the input voltage constant and record the readings in Table 2.
- 7 Repeat the above steps till the output amplitude increases and falls below the 70.7% of the maximum value.
- 8 Plot the graph by taking frequency in X axis & gain in Y axis as shown in Fig 2.
- 9 Mark the 3 dB lower and higher cut-off frequences on the graph.


Table 1

DC voltage levels

V _B	V _c	V _E

Table 2

SI.No	Freq in kHz	V _{out}	V _{in}	$Gain = \frac{V_{out}}{V_{in}}$

10 Get the work checked by the Instructor.

3dB Lower cut-off frequency = -----kHz 3dB Higher cut-off frequency = -----kHz

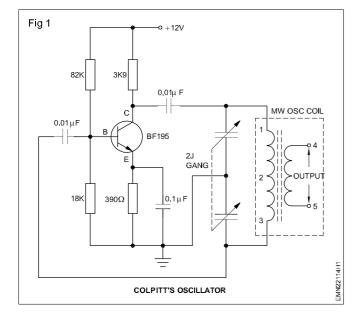
Electronics & Hardware Electronic Mechanic - Oscillators

Demonstrate Colpitt's oscillator, Hartley oscillator circuits and compare the output frequency of the oscillator by CRO

Objectives: At the end of this exercise you shall be able to

- · construct and test a Colpitts oscillator
- · construct and test a Hartley oscillator
- · compare the measured output frequency with calculated frequency.

Requirements				
Tools/Equipments/Instruments		Materials/Components		
 Trainees tool kit CRO 20 MHz -Dual trace Regulated DC power supply 0-30V/2A Digital multimeter with probes Soldering iron 25W/230V Soldering iron stand 	- 1 Set - 1 No - 1 No - 1 No - 1 No - 1 No	 Transistor BF 195 MW oscillator coil Breadboard Resistor ¼ W/CR25 18kΩ, 390Ω, 82kΩ, 3K9 Capacitor 0.1 μF 0.01 μF 2J gang capacitor Hook up wires Rosin cored solder 	- 1 No - 1 No - 1 No - 2 Nos each - 1 No - 2 Nos - 1 No - as reqd - as reqd	


PROCEDURE

TASK 1: Construction and testing of a Colpitts oscillator

- 1 Collect all the required components for assembling/ collect trainer kit & test the component for working condition.
- 2 Plan the layout and assemble the circuit on the breadboard as shown in Fig 1.

Note: If the trainer kit on oscillator is not available, the instructor can use assembled oscillator for demonstration.

3 Get the assembled circuit checked by the Instructor.

- 4 Prepare the CRO for measuring the output of oscillator.
- 5 Switch ON the 12VDC supply to the circuit connect the CRO at the output terminal of the oscillator circuit and measure the waveform.
- 6 Adjust the gang capacitor to get the desired frequencyo on CRO.

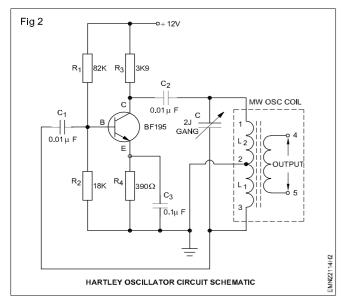
Note: The operating range of Colpitts oscilator using medium wave oscillator coil is from 1000 kHz to 2055 kHz Frequency of Colpitts oscillator can be determined therotically by using Formula:

$$F = \frac{1}{2\pi\sqrt{LC}}$$

Where 'C' is the capacitance of 2J gang and L is the inductance of the oscillator coil in the tank circuit.

- 7 Repeat the above step, by changing the position of the gang capacitor and record the readings in Table 1.
- 8 Draw waveform observed at 3 positions of gang capacitor and note down the frequencies.
- 9 Compare the calculated value with observed value of frequencies.

Table 1 Colpitts oscillator Observation


	Conventional circuit		
Position of	Amplitude in volts	Frequency in Hz	
gang capacitor		Calculated	Observed
Gang capacitor at one extreme end			
Gang capacitor at other extreme end			
Gang capacitor at approximately mid-position			

10 Get the work checked by the Instructor.

TASK 2: Construction and testing of a Hartley oscillator

- 1 Use trainer kit (or) assemble the components as shown in Fig 2 on breadboard.
- 2 Connect the DC supply and set for 12V

- 3 Switch on the supply
- 4 Switch on the CRO and adjust to get horizontal trace.
- 5 Connect the CRO in the O/P terminal of the circuit.
- 6 Observe the output of the circuit in the CRO, adjust the time/div, V/div knobs to get stable wave form.
- 7 Measure the time period & calculate the frequency of oscillator using the formula $F = \frac{1}{T}$ practically.

Note: Frequency of Hartley oscillator can be determined theoritically by using formula

$$F = \frac{1}{2\pi\sqrt{LC}}$$
 , Where 'C' is the capaci-

tance of the capacitor C1 in tank circuit and L = L1 + L2 the effective series inductances of tank circuit.

- 8 Repeat the above steps by changing the position of the gang capacitor and record the readings in Table 2.
- 9 Draw waveform observed at different settings of gauged capacitor and note down the frequencies as given in Table 2.

Table 2

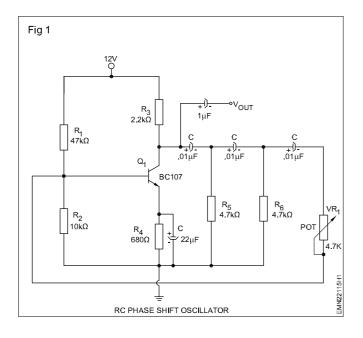
	Conve circui	entional t
Position of gang capacitor	Amplitude in volts	Frequency in Hz
Gang capacitor at one extreme end		
Gang capacitor at other extreme end		
Gang capacitor at approximately mid-position		

10 Get the work checked by the Instructor.

Electronics & Hardware Electronic Mechanic - Oscillators

Construct and test RC phase-shift oscillator circuits

Objectives: At the end of this exercise you shall be able to


 construct and test RC phase shift oscillator circuit using transistor and vary the output frequency of the oscillator.

Requirements				
Tools/Equipments/Instruments	Materials/Components			
 Trainees tool kit Regulated DC power supply, 0-30V/2A CRO, 20 MHz - Dual channel Digital frequency counter 	- 1 Set - 1 No - 1 No - 1 No	 Breadboard Resistor ¼ W/CR25 10kΩ, 2k2, 680Ω, 47kΩ Resistor 4.7kΩ/¼ W/CR25 	- 1 No - 1 No each - 2 Nos	
 Soldering Iron 25W/230V with stand Digital multimeter with probes 	- 1 No - 1 No	 Capacitor 25VDC working 0.01 μF 1μF, 22μF Transistor BC 107 POT 4.7kΩ Hookup wire 	- 3 Nos - 1 No each - 1 No - 1 No - as reqd	

PROCEDURE

TASK 1: Construction and testing of RC phase shift oscillator circuit using transistor

- 1 Collect all the components from instructor and test them.
- 2 Assemble the RC phase-shift oscillator as shown in Fig 1 on the breadboard.

- 3 Get the assembled circuit checked by the Instructor.
- 4 Preapre the CRO for measurements and connect it across the output terminals.
- 5 Switch ON the 12VDC supply to the RC phase shift oscillator circuit and measure the output waveform using CRO.

If there is no output, adjust the value of POT to get the output; even after adjusting the POT no output is available consult the instructor.

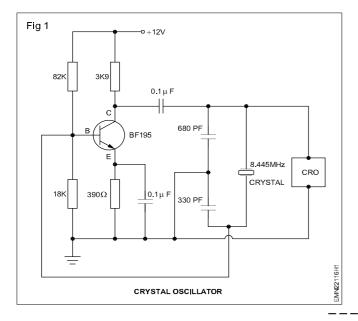
- 6 Keep the preset VR₁ at maximum resistance position adjust the preset pot and observe the change in frequency/waveform on CRO.
- 7 Measure and record the oscillator output frequency in Table1.
- 8 Measure the output using frequency counter also and record the readings in Table 1.
- 9 Adjust POT suitably and find the minimum and maximum frequency of oscillations of the circuit. Record the observations in Table.
- 10 Compare the calculated and measured frequency of the oscillator.
- 11 Get the work checked by the Instructor.

 $\label{eq:Table 1} \textbf{Table 1} \\ \textbf{Output frequency at different positions of R}_{\scriptscriptstyle 3} \, \textbf{preset Calculated frequency} \, \underline{\qquad} \, \textbf{Hz} \\ \\ \textbf{Hz} \\ \textbf{Table 1} \\ \textbf{Preset Calculated frequency} \, \underline{\qquad} \, \textbf{Hz} \\ \textbf{Table 1} \\ \textbf{Table 2} \\ \textbf{Table 3} \\ \textbf{Table 3} \\ \textbf{Table 4} \\ \textbf{Table 5} \\ \textbf{Table 5} \\ \textbf{Table 6} \\ \textbf{Table 7} \\ \textbf{Table 6} \\ \textbf{Table 7} \\ \textbf{Table 8} \\ \textbf{Table 7} \\ \textbf{Table 8} \\ \textbf{Table 8} \\ \textbf{Table 8} \\ \textbf{Table 8} \\ \textbf{Table 9} \\ \textbf{Ta$

SI. No.	Position of preset VR ₁	Frquency measured using CRO	Frequency measured using freq counter	$\frac{Calculated}{Frequency} F = \frac{1}{2 \pi RC \sqrt{6}}$
1	Minimum			
2	Middle			
3	Maximum			

Construct and test a crystal oscillator circuit

Objectives: At the end of this exercise you shall be able to


· construct and test a Crystal oscillator using transistor.

Requirements			
 Tools/Equipments/Instruments Trainees tool kit Oscilloscope, 20 MHz Dual trace Regulated DC power supply 0-30V/2A Digital multimeter with probes Materials/Components 	- 1 Set - 1 No - 1 No - 1 No	 8.44 MHz Crystal with holder Capacitors - 25V DC wkg 680pF 330pF Capacitor 0.1μF Transistor BF195 Resistors ¼ W/CR25 82kΩ,18kΩ, 3.9kΩ, 390Ω 	- 1 No - 1 No - 1 No - 2 Nos - 1 No
BreadboardHook up wires	- 1 No - as reqd		

PROCEDURE

TASK 1: Construction and testing of crystal controlled Pierce oscillator

- 1 Record the frequency marked on the crystal.
- 2 Collect all the required components, test and assemble pierce crystal controlled oscillator circuit on breadboard as shown in Fig 1.

- 3 Connect 12V DC supply to the oscillator circuit.
- 4 Prepare the CRO for measurement and connect it cross the output of the oscillator.
- 5 Adjust the CRO time-base to get a clear sinusoidal waveform on the screen. Measure and record the amplitude and frequency of oscillations.

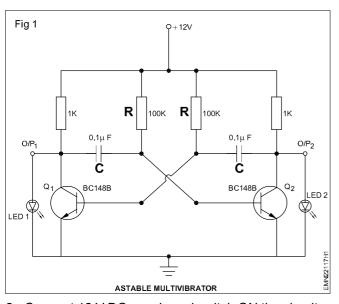
If oscillations are not seen, the crystal may be bad. Consult your instructor.

- 6 Decrease the supply voltage to find and record the minimum V_{CC} voltage at which the crystal oscillator oscillates satisfactorily.
- 7 Get the working of the circuit and the recorded readings checked by the instructor.

TASK 2: Construct and test a Pierce Crystal oscillator

1	Fred	quency marked on crystal	<u>:</u>
2	(a)	Amplitude of oscillations	:
	(b)	Frequency of oscillations	·
3	(a)	Minimum V _{cc} at which crystal oscillator work satisfactorily	:
	(b)	Output frequency	:
	(c)	Output amplitude	·

Demonstrate Astable, Monostable and Bistable multivibrator circuits using transistors


Objectives: At the end of this exercise you shall be able to

- · construct and test an astable multivibrator using transistors
- · construct and test a monostable multivibrator using transistors
- · construct and test a bistable multivibrator using transistors.

PROCEDURE

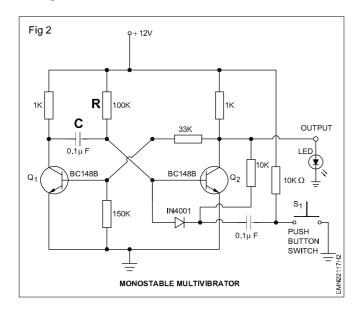
TASK 1: Construction and testing of astable multivibrator using transistors

1 Collect the required components, test and assemble the astable multivibrator on breadboard as shown in Fig 1.

2 Connect 12 V DC supply and switch ON the circuit.

- (a) Calculated ON-time (t_{ON}) : (0.69 RC): ______
 (b) Calculated OFF-time (t_{OFF}): (0.69 RC): _____
 (a) Measured ON-time (t_{ON}) : _____
 (b) Measured OFF-time (t_{OFF}): _____
- 3 Prepare the CRO for measurements and connect it across any one of the collector of the transistor and ground.
- 4 Observe the waveform, measure the frequency of oscillation and record it in Table 1.
- 5 Calculate the ON time OFF time, PRF and record the values.
- 6 Observe the of LEDs and record in Table 1.

Table 1


Value of Wave form		form at	Calculated	Measured	Status of	Remarks	
R	С	Base	Collector	frequency (PRF)	frequency (PRF)	LEDs	

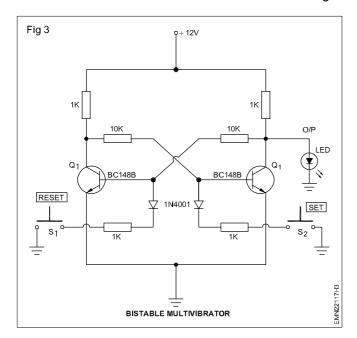
7 Get the work checked by the Instructor.

TASK 2: Construction and testing of monostable / One shot multivibrator using transistors

1 Assemble the monostable multivibrator as shown in Fig 2.

- 2 Calculate and record the ON time of the monostable multivibrator.
- 3 Get the circuit and calculated values checked by the Instructor.
- 4 Switch ON 12 VDC supply to the circuit, connect the CRO probe at the collector of Q₁ with reference to ground.

1	Calculated ON time	: <u></u>
2	Measured ON time of the	
	output pulse (t_{ON})	
	with C = 100μ F	:
3	Calculated ON time	:
	Measured ON time	:


- 5 Press switch S₁ and observe the LED and one single pulse output on CRO. Repeat this step for adjusting the CRO controls such that the pulse can be clearly seen on CRO.
- 6 Press S₁ repeatedly such that the pulse keep appearing on the screen repeatedly. Measure and record the ON time of the pulse.

If the CRO used has storage option, use this option to measure the ON time more conveniently. Take the help of the instructor to use the storage option on the DSO.

- 7 Change the value of the capacitor C from $0.1\mu F$ to $100\mu F$. Calculate and record the new ON-time of the pulse.
- 8 Switch ON DC supply to the circuit. Press switch S₁ and observe the LED glowing. Try to find the approximate glow time using a stop watch record the glowing time of the LED.
- 9 Get the working of the circuit checked by the Instructor.

TASK 3: Construction and testing of Bistable multivibrator using transistors

 $1\quad Assemble\, the\,\, bistable\, multivibrator\, as\, shown\, in\, Fig\, 3.$

- 2 Connect the 12VDC supply to the circuit and switch ON
- 3 Press switch S_1 , observe the condition of LED.
- 4 Press switch S₂, observe the condition of LED.
- 5 Record the observations in Table 1.

Table 1

SI. No.	Switch	Output condition			
	to press	(HIGH/LOW)	(Glow / No Glow)		
	Set				
	Reset				

6 Get the work checked by the Instructor.

Electronics & Hardware Electronic Mechanic - Wave shaping circuits

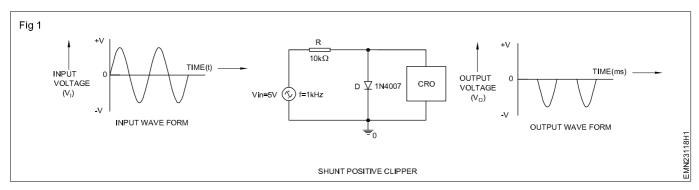
Exercise 2.3.118

Construct and test shunt clipper

Objectives: At the end of this exercise you shall be able to

- · construct and test the positive shunt clipper circuit using descrete components
- · construct and test the shunt negative clipper circuit.

Requirements					
Tools/Equipments/Instruments Materials/Components					
 Trainees tool kit Function Generator Oscilloscope 20 MHz - Dual trace Regulated DC power supply 0-30V/2A Digital multimeter with probe 	- 1 Set - 1 No - 1 No - 1 No - 1 No	 Diode 1N 4007 Resistor 10 kΩ/½ W/CR25 Breadboard Hook up wires 	- 1 No - 1 No - 1 No - as reqd		

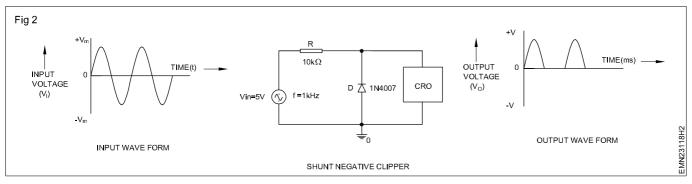

PROCEDURE

TASK 1: Construction and testing of positive shunt clipper circuit using discrete components

- 1 Collect the components identify the diode number and cathode terminal.
- 2 Carry out quick test to confirm good working condition of the given diode using multimeter
- 3 Construct the positive shunt clipper circuit as shown in Fig 1 and verify the circuit connection by the Instructor
- 4 Switch on the 5 VDC power supply to the shunt clipper circuit.
- 5 Set the function generator to sinewave output with 1kHz 10 $V_{\rm p.p}$.
- 6 Prepare the CRO for meaurements.
- 7 Observe the input waveform, output clipped waveform and record them in Table 1.
- 8 Use DMM measure the input, output voltages and record the radings in Table 1.

Table - 1

SI. No.	Voltage	Waveform	Voltage as per CRO	Voltage as per DMM	Remarks
1	Inputvoltage				
2	Output voltage				


9 Get the work checked by the Instructor.

TASK 2: Construction and testing of negative shunt clipper

- 1 Modify the polarities of the diode as shown in Fig 2 for negative shunt clipper circuit.
- 2 Repeat steps 4 to 8 of Task 1 and record the readings in Table 2

Table - 2

SI. No.	Voltage	Waveform	Voltage as per CRO	Voltage as per DMM	Remarks
1	Input				
2	Output				

3 Ge the work checked by the Instructor.

Electronics & Hardware Electronic Mechanic - Wave shaping circuits

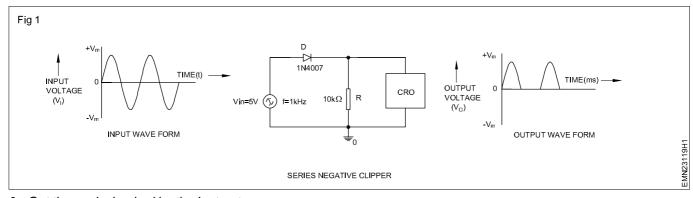
Exercise 2.3.119

Construct and test series and dual clipper circuit using diodes

Objectives: At the end of this exercise you shall be able to

- · construct and test series negative clipper circuit using diode
- · construct and test series positive clipper circuit using diode
- construct and test dual clipper circuit using diode.

Requirements					
Tools/Equipments/Instruments Materials/Components					
 Trainees tool kit Function Generator CRO 20 MHz - Dual trace Regulated DC power supply 0-30V/2A Digital multimeter with probes 	- 1 Set - 1 No - 1 No - 1 No - 1 No	 Diode 1N 4007 Resistor 10 kΩ /¼ W/CR25 Breadboard Hook up wires 	- 1 No - 1 No - 1 No - as reqd		

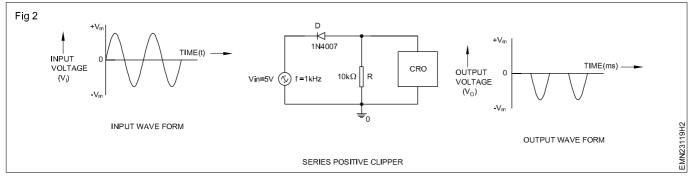

PROCEDURE

TASK 1: Construction and testing of series negative clipper circuit using discrete components

- 1 Collect the components, identify the diode number and cathode terminal.
- 2 Carry out quick test to confirm good working condition of the given diode using multimeter.
- 3 Construct the series negative clipper circuit as shown in Fig 1 on breadboard and verify the circuit connection by the Instructor.
- 4 Switch ON the 5 VDC power supply to the series negative clipper circuit.
- 5 Set the function generator to sinewave output with 1kHz 10 $V_{\rm p.p}$.
- 6 Prepare the CRO for meaurements.
- 7 Observe the input waveform, output clipped waveform and record them in Table 1.
- 8 Use DMM measure the input, output voltages and record the readings in Table 1.

Table - 1

SI. No.	Voltage	Waveform	Voltage as per CRO	Voltage as per DMM	Remarks
1	Input				
2	Output				

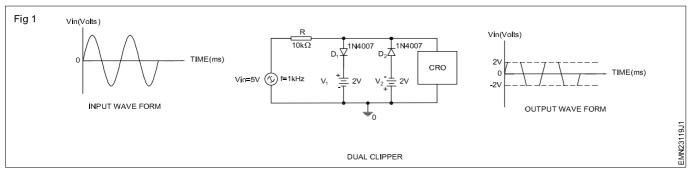

9 Get the work checked by the Instructor.

TASK 2: Construction and testing of series positive clipper

- 1 Modify the polarities of the diode as shown in Fig 2 for series positive clipper circuit.
- 2 Repeat steps 4 to 8 of Table 1 and record the readings in Table 2.

Table - 2

SI. No.	Voltage	Waveform	Voltage as per CRO	Voltage as per DMM	Remarks
1	Input				
2	Output				


3 Get the work checked by the Instructor.

TASK 3: Construction and testing of dual Clipper Circuit using discrete components

- 1 Collect the components, check them and assemble the dual clipper circuit on breadboard as shown in Fig 1.
- 2 Set 2V DC on both the sections of dual DC power supply and connect as V1 AND V2 as shown in the circuit.
- 3 Check and verify the circuit connection by the linstructor.
- 4 Repeat steps 4 to 8 of Task 1 and record the readings in Table 3.

Table - 3

SI. No.	Voltage	Waveform	Voltage as per CRO	Voltage as per DMM	Remarks
1	Input				
2	Output				

5 Ge the work checked by the Instructor.

46

Electronics & Hardware: Electronic Mechanic (NSQF Level-5) - Exercise 2.3.119

Electronics & Hardware Electronic Mechanic - Wave shaping circuits

Exercise 2.3.120

Construct and test clamper circuit using diodes

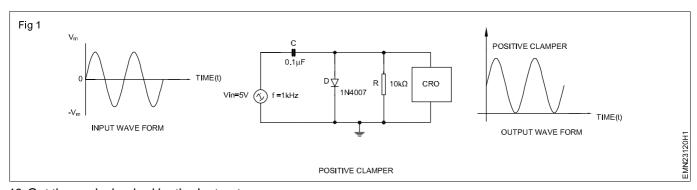
Objectives: At the end of this exercise you shall be able to

- · construct and test a positive clamper circuit using diode
- construct and test a negative clamper circuit using diode.

Requirements						
Tools/Equipments/Instruments		Materials/Components				
 Trainees tool kit Function Generator 0-1 MHz Oscilloscope 20 MHz - Dual trace Regulated DC power supply 0-30V/2A Digital multimeter with probes 	- 1 Set - 1 No - 1 No - 1 No - 1 No	 Diode 1N 4007 Resistor 10 kΩ /¼ W/CR25 Capacitor 0.1 μF/25VDC Breadboard Connecting wires/Hook up wires 	- 1 No - 1 No - 1 Nos - 1 No - as reqd			

PROCEDURE

TASK 1: Construction and testing of positive clamper circuit using discrete components


- 1 Collect all the components required identify the diode number and cathode terminal.
- 2 Carryout quick test to confirm good working condition of the given diode using multimeter.
- 3 Construct the positive clamper circuit as shown in Fig 1 on breadboard.
- 4 Check and verify the circuit connection by the Instructor.
- 5 Switch ON the 5 VDC power supply to clamper circuit.

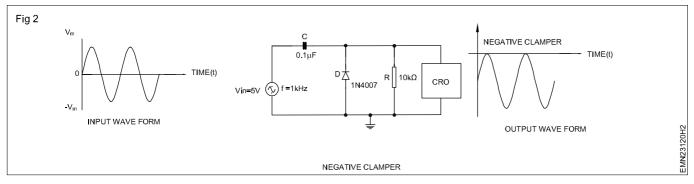
Safety precautions: Ensure the variable DC power supply control zero volt position.

- 6 Set the Sinewave generator frequency to 1kHz and its output amplitude to 10 V_{n-n} .
- 7 Prepare the CRO for measurements.
- 8 Observe the output waveform on the CRO, and record the amplitude and time period from the waveforms in Table 1.
- 9 Measure the clamped voltage verify with the input voltage using DMM and record the observations in Table 1.

Table - 1

SI. No.	Voltage	Waveform	Voltage as per CRO	Voltage as per DMM	Remarks
1	Input				
2	Output				

10 Get the work checked by the Instructor.


47

TASK 2: Construction and testing of negative clamper circuit using discrete components

- 1 Modify the polarities of the diode as shown in Fig 2 for negative clamper circuit.
- 2 Repeat stpes 4 to 9 of Task 1 and record the observations in Table 2.

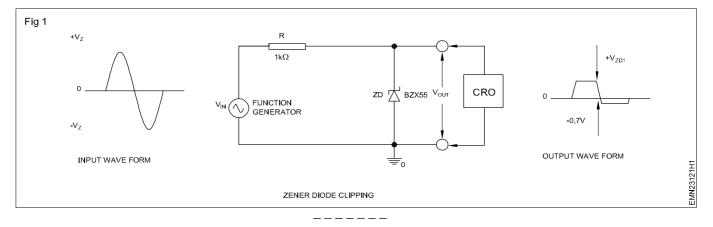
Table - 2

SI. No.	Voltage	Waveform	Voltage as per CRO	Voltage as per DMM	Remarks
1	Input				
2	Output				

3 Get the work checked by the Instructor.

Construct and test zener diode as a peak clipper

Objectives: At the end of this exercise you shall be able to


- · construct zener diode circuit as peak clipper
- · test zener diode circuit.

Requirements						
Tools/Equipments/Instruments		Materials/Components				
 Trainees tool kit Function Generator 0-1MHz Oscilloscope 20 MHz - Dual trace Regulated DC power supply 0-30V/2A Digital multimeter with probes 	- 1 Set - 1 No - 1 No - 1 No - 1 No	 Zener Diode BZX55 or equivalent Resistor 1kΩ /½ W/CR25 Breadboard Connecting wires/Hook up wires Aids: Semiconductor data manual 	- 1 No - 1 No - 1 No - as reqd - as reqd			

PROCEDURE

TASK 1: Construction of peak clipper Circuit using Zener Diode

- 1 Collect the components and identify the Zener diode number and cathode terminal.
- 2 Carry out quick test to confirm good working condition of the given diode using multimeter.
- 3 Construct the peak clipper circuit as shown in Figure 1.
- 4 Check and verify the circuit connection by the Instructor.

TASK 2: Test the clipper circuit

- 1 Switch ON the 5 VDC power supply to the peak clipper circuit.
- 2 Switch ON the signal generator, apply Sinewave input amplitude greater than the clipping level of the zener diode.
- 3 Prepare the CRO for measurements.

- 4 Observe the output waveform on the CRO, record the amplitude and time period from the waveform in Table 1.
- 5 Measure the clipped voltage, verify with the input voltage using DMM and record the observations in Table 1.
- Table 1

SI. No.	Voltage	Waveform	Voltage as per CRO	Voltage as per DMM	Remarks
1	Input				
2	Output				

6 Get the work checked by the Instructor.

Electronics & Hardware

Exercise 2.4.122

Electronic Mechanic - Power Electronic components

Identify different power electronic components, their specification and terminals

Objectives: At the end of this exercise you shall be able to

- identity the terminals of FET, UJT and its specification using data manual
- identify the terminals of SCR, TRIAC, DIAC and its specification using data manual.

Requirements								
Tools/Equipments/Instruments		Material/Components						
 Trainees tool kit Semiconductor data manual for the active devices used for this exercise Digital multimeter with probes Aids: Chart showing the pin out diagram of active devices used for this exercise 	- 1 Set - as reqd - 1 No - as reqd	 Assorted types of N-Channel FET Assorted types of SCR Assorted types of UJT Assorted types of TRIAC Assorted types of DIAC Plastic sleeves (2mm dia)-Red, Green, Yellow, Black 	- 3 Nos - 3 Nos - 2 Nos - 2 Nos - 2 Nos - 1 M each					

Note: The instructor has to label the active devices used for this exercise

PROCEDURE

TASK 1: Identification of leads of given FETs and its specifications using Data manual

- 1 Collect the components and pick a labelled FET from the assorted lot record the code number of the FET and enter against its label number in Table 1.
- 2 Draw the pinout package diagram, refer to the chart/ data manual/identify and record the following important specification of the FET based on its type Number, package type,
 - Polarity of the device (N-type/P-type)
 - Maximum drain-source Voltage, V_{DS}
 - Maximum gate-source Voltage, V_{GS}
 - Maximum drain current, I_D.

- Maximum forward gate current, I_a.
- Pinch-off Voltage (at I_D =0), V_P.
- Maximum power dissipation, P_{max}
- 3 Put sleeves of suitable length to the leads following the colour scheme given below.

Drain - Red

Source - Green

Gate - Yellow

Shield - Black

4 Repeat steps 1 to 3 for the remaining labelled FETs.

Table 1

SI. No.	Label	FET No.	Туре	V _{DS}	V _{GS}	I _D	l _G	V _P	P _{max}	Package/ diagram pintout
1										
2										
3										

5 Get the work checked by the Instructor.

TASK 2: Identifications of UJT by its code number

- 1 Pick a labelled UJT, record the code number, refer to the data manual find and record the specification of the given UJTs in Table 2.
- 2 Draw the pinout/package diagram and mark the terminal.

Table 2

SI.No	Type Label No.	Device code number	l _P	l _v	R _{BB}	h	Package pinout diagram
1							
2							

3 Get the work checked by the Instructor.

TASK 3: Identification and specifications of SCR by its code number

- 1 Collect the components from the instructor and pick one of the labelled SCR from the assorted lot, note down the SCR label number and its Code number printed on the SCRI in Table 3.
- 2 Draw the package/pinout diagram of SCR identify the terminals of SCR referring to the data manual, and record the specifications in Table 3.

In some power SCRs, the metal case itself will act as anode. Mark "A' on the case using a pencil or put a RED colour dot using colour marker pen.

3 Repeat above steps for remaining labelled SCRs from the assorted lot.

Table 3

SI. No.	Label No	Code number of SCR	V _{RRM}	I _{T(RMS)}	I _{TSM}	I _{GT}	V _{GT}	I _H	Package/ pinout diagram
1									
2									
3									

4 Get the work checked by the Instructor.

TASK 4: Identification of leads of given TRIAC and its specifications using data manual

- 1 Pick a labelled TRIAC from the given lot, record the code number of the TRIAC against its label number in Table 4.
- 2 Draw the pinout/package diagram, refer to the chart/ data manual, identify and record the important specifications used on the code number in Table 4.
- 3 Repeat above steps for the remaining labelled TRIAC and record the observations in Table 4.

Table 4

SI. No.	Label No.	Code number	Votage off state	Current on-state (I _t)	Current gate trigger (I _{gt})	Package pinout diagram
1						
2						

	~			
4	Get the work	checked	by the	Instructor.

_	_	_	_		_

TASK 5: Identification of leads of given DIAC and its specifications using data manual

- 1 Pick a labelled DIAC from the given lot, record the code number against its label number in Table 5.
- 2 Draw the package/terminal diagram, refer to the datasheet, identify and record the important specifications of the DIAC in Table 5.
- 3 Repeat above steps for the remaining labelled DIACs and record the observations in Table 5.

Table 5

SI.No	Label No.	Code number	V _{BO}	I _{TRM}	T _j	Package pinout diagram
1						
2						

4	Get the	work c	hecked	by t	he I	nstruc	tor.
---	---------	--------	--------	------	------	--------	------

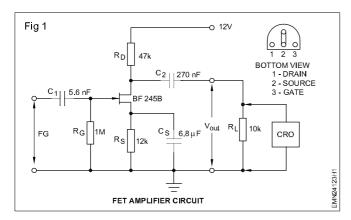
Electronics & Hardware

Exercise 2.4.123

Electronic Mechanic - Power Electronic components

Construct and test a FET Amplifier

Objectives: At the end of this exercise you shall be able to


- · construct a voltage amplifier using a JFET
- measure the gain of JFET amplifier with different input voltages
- · calculate the gain of the amplifier at different frequencies.

Requirements			
 Tools/Equipments/Instruments Trainees tool kit Regulated DC power supply 0-30V/2A Function generator Soldering iron 25W/240VAC 	- 1 Set - 1 No - 1 No - 1 No	 Capacitors 5.6 nF/25V DC 270 nF/25V DC 6.8 μF/25V Resistors, ½ W/CR25 10 kΩ 	- 1 No - 1 No - 1 No - 1 No
Oscilloscope 0-20 MHz Dual traceDigital multimeter with probes	- 1 No - 1 No	12 kΩ 47 kΩ 1 MΩ	- 1 No - 1 No - 1 No
 Materials/Components Assorted types of N-channel JFET Plastic sleeves 	- 4 Nos	Solder, fluxHook up wires	- as requ - as requ
Red, Green, Yellow, Black (each of 10mm length) Aids: Semiconductor data manual/ data sheet of the FET	- 4 Nos - as regd	One of the given JFET should be 10 or equivalent.	ea BF 245B or BFW

TASK 1: Construction and testing of FET amplifier

1 Collect the required components, test and assemble the FET amplifier as shown in Fig 1.

Construct the circuit on a bread board or on a GPCB.

- 2 Get the assembled circuit checked by the instructor.
- 3 Switch ON the 12 VDC to the circuit.
- 4 Set the function generator output with sinewave at 10 kHz, 100 mV_{p-n} as the input to the FET amplifier.
- 5 Prepare the CRO for measurements and observe the output across the $R_{\mbox{\tiny I}}$.
- 6 Record the output reading in Table 1.

Table 1

Inp	out frequency	: 10 kHz	
SI. No	Input voltage (mV)	O/P voltage	Gain= Output voltage Input voltage
1 2	100 200		
3	300		
4 5	400 500		
6	600		
7 8	700 800		
9	900		
10	1000		

- 7 Increase the input voltage in steps of 100 mV upto 1V, record the observation in Table 1.
- 8 Calculate gain for each setting of input and record them.
- 9 Get the work checked by the Instructor.

TASK 2: Measurement of gain of FET amplifier at different frequencies

- 1 Set the function generator output with sinewave at 20 kHz- 400 mV, switch ON the FET amplifier
- 2 Measure the output across R_L using CRO and record the readings in Table 2.

Table 2

Input volt 400mV			
Frequency kHz	O/P Voltage	Gain =	Output voltage Input voltage
40 80 100 120 150			

- 3 Increase the signal frquency from 20 kHz in steps of 20 kHz, measure the output voltage and record the readings in Table 2.
- 4 Calculate the gain for each setting of input and record them.
- 5 Get the work checked by the Instructor.

Electronic Mechanic - Power Electronic components

Construct and test a circuit of SCR using UJT triggering

Objectives : At the end of this exercise you shall be able to

· construct and test of SCR using UJT triggering.

Requirements			
 Tools/Equipments/Instruments Digital multimeter with probes Trainees tool kit AC Power supply (0-250V) CRO, 0-20MHz-Dual channel 	- 1 No - 1 Set - 1 No - 1 No	 Miniature toggle switch SPST SCR.Ty 6004 Variable Resistor pot 100 K Lamp 12V/5W with holder Capacitor 100 μF/25V, 10 μF/25V Resistor 	- 2 Nos - 1 No - 1 No - 1 Set - 1 No each
 Materials/ Components Stepdown transformer 230V/0-12V/500mA Diode 1N4007 Zener diode 12V/1W LED-5mm/Red UJT 2N2646 Aids: Semiconductor data manual data sheet of the LOT and SCR 	- 1 No - 2 Nos - 1 No - 1 No - 1 No - as reqd	$\begin{array}{c} \text{Resistor} \\ 100 \ \Omega \\ 12 \ \Omega \\ 4.7 \ k\Omega \\ 3.3 \ k\Omega \\ 560 \ \Omega \\ 1 \ k\Omega \\ \bullet \ \text{Gen purpose PCB} \\ \bullet \ \text{Rosin cored solder} \\ \bullet \ \text{Hook up wire} \end{array}$	- 2 Nos - 1 No - 1 No - 1 No - 1 No - 1 No - 1 No - as reqd - as reqd

PROCEDURE

TASK 1:

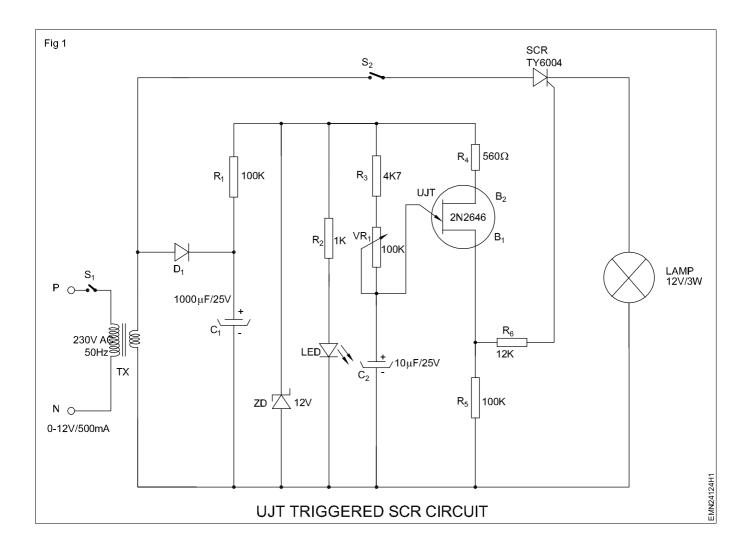

- 1 Collect all the components required, test them and confirm their working condition.
- 2 Plan the layout of components on the General purpose PCB, assemble the circuit as shown in Fig 1.
- 3 Verify the connections and get the assembled circuit checked by the Instructor.
- 4 Keep switch S2 open, switch ON mains supply to transformer, observe the LED is ON.
- 5 Measure the DC voltage at cathode of zener diode, B1 & B2 terminals of UJT and record the readings in Table 1.

Table 1

Voltage across			Waveform across	
Zenerdiode	UJTB1	B2	B2	Lamp

- 6 Prepare CRO for measurements and observe the Pulse waveform at B2 terminal of UJT.
- 7 Close the switch S2 to allow AC supply to SCR, observe the Lamp is ON.
- 8 Measure the waveform across the Lamp and record the observations in Table 1.
- 9 Get the work checked by the Instructor.

Note: The Instructor has to adjust the preset slightly and observe the pulse frequency waveform, explain the reasons to trainees.

Electronics & Hardware

Exercise 2.4.125

Electronic Mechanic - Power Electronic components

Identify different heatsinks used in SCRs

Objective: At the end of this exercise you shall be able to

to identify different shapes and sizes of heatsinks used for SCRs.

Requirements

Tools/Equipments/Instruments

- 1 Set
- International SCR data book
- 1 No
- Data sheets of SCRs

Trainees tool kit

- as regd
- Chart showing all types of heatsinks used for SCRs
 - 1 No

Materials/Components

- SCR with assorted rating (T0-3, T0-3P, T0-92, T0-220, T0-220AB, T0-126,
 - T0-208AC, T0-247, T0-65, T0-32)
- 10 Nos
- Heat sinks for given SCR packages -10 Nos

Note:

- 1 The Instructor has to provide minimum one SCR in each package type with label for all ratings of voltage/current and physical sizes.
- 2 Label all the heatsinks provided for this exercise with different method of coding.

PROCEDURE

- 1 Pick one of the labelled SCR, refer to data book identify the ratings package type etc., record those parameters in Table 1.
- 2 Repeat the above steps for all the labelled SCRs.
- 3 Identify the heat sink required for given SCR according to SCR current rating/Junction temperature with reference to the Chart 1.
- 4 Repeat the above step for the labelled items.

Table 1

SI.No	SCR Label	Code number on SCR	Package type	Voltage rating	Current rating	V _{GT}	I _{GT}	T _J Junction temperature	Remarks
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									

Table 2

SI. No.	Heatsink Label No.	Suitable for SCR type Package No.	Remarks
		r ackage No.	

5 Get the work checked by the Instructor.

Chart 1

Electronics & Hardware

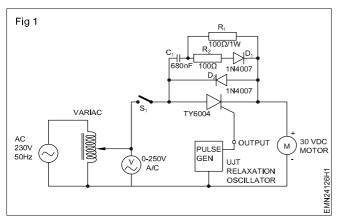
Exercise 2.4.126

Electronic Mechanic - Power Electronic components

Construct a snubber circuit for protecting SCR use freewheeling diode to reduce back emf

Objective: At the end of this exercise you shall be able to

- · construct a snubber circuit for protecting SCR and use free wheeling diode to reduce back emf.
- measure the waveform of gate trigger pulse and across the load.


Requirements						
Tools/Equipments/Instruments Materials/Components						
 Trainees tool kit Variac (0-260 VAC/5A) Digital multimeter with probes 	- 1 Set - 1 No - 1 No	 General purpose printed circuit Board Resistors 120Ω, 100Ω/1W 	- 1 No - 1 No each			
 CRO, 0-20MHz Dual channel Pulse generator/Function generator 	- 1 No - 1 No	30 VDC motor/2A SCRTY6004	- 1 No - 2 Nos			
		Capacitor 680 pF/1KV DPST Switch	- 1 No - 1 No			

Note: The instructor may use the assembled circuit of previous Ex.No.2.4.124 for this task with necessary additional components for snubber circuit across the SCR.

PROCEDURE

TASK 1: Construction snubber circuit for protecting SCR with free wheeling diode

1 Collect all the components, check them plan the layout of the circuit shown in Fig 1 on the general purpose PCB.

- 2 Fix the component as per the layout assemble the snubber circuit for SCR.
- 3 Get the assembled snubber circuit checked by the Instructor.
- 4 Connect the load (DC motor) and the pulse generator to the SCR circuit.
- 5 Keep the variac in zero volt position and connect to the AC mains supply.

- 6 Switch ON and adjust prepare the CRO for measurements.
- 7 Switch ON the AC mains supply, adjust /set the ouput of variac at 30 VAC to the circuit.
- 8 Switch ON the pulse generator and apply the gate triggering pulse to the SCR.
- 9 Measure the waveform at gate terminal across the load, and across the SCR.
- 10 Record the observation in Table 1.

Table 1

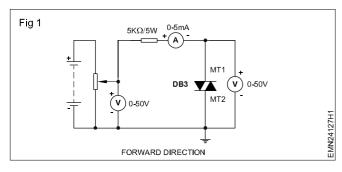
SI. No	Test point	Waveform measured	Remarks
1	Gate terminal		
2	Across load		
3	Across SCR		

11 Get the work checked by the Instructor.

Electronic Mechanic - Power Electronic components

Construct a jig circuit to test DIAC

Objectives: At the end of this exercise you shall be able to


- · construct the test jig circuit for DIAC
- · test the DIAC in both directions.

Requirements						
Tools/Equipments/Instruments		Materials/Components				
 Trainees tool kit Regulated DC power supply 0-30V/2A Ammeter 0-5 mA (MC) Voltmeter 0-50V DC (MC) Digital multimeter with probes Aids: Semiconductor data manual /data sheet of the DIAC 	- 1 Set - 1 No - 1 No - 1 No - 1 No - as reqd	 DIAC DB3 or equivalent Resistor 5kΩ/5W Breadboard Hook up wires 	- 1 No - 1 No - 1 No - as reqd			

PROCEDURE

TASK 1: Testing the DIAC in one direction

- 1 Collect the DIAC and identify the terminals with reference to the Data sheet, note down the rating of the DIAC $V_{\rm BO}$ $I_{\rm BO}$.
- 2 Assemble the circuit on breadboard as shown in Fig 1.

- 3 Switch ON the DC power supply unit, increase the voltage to 5V.
- 4 Observe the ammeter, measure the voltage across DIAC and record the readings in Table 1.
- 5 Increace the DC voltage in steps of 5V upto 25V, record the readings.

Note: After reached 25V DC, carefully increase the voltage and observe the breakover of the DIAC.

6 Slowly increase the voltage in steps of 2V upto 30V and record the readings.

Table 1

SI. No.	Applied Voltage	Current	Voltage across DIAC	Remarks
1	5V			
2	10V			
3	15V			
4	20V			
5	25V			
6	27V			
7	29V			
8	30V			

7 Get the work checked by the Instructor.

TASK 2: Testing the DIAC in opposite direction

1 Reserve the polarity of the DIAC and connect the circuit as shown in Fig 2.

2 Repeat steps 3 to 6 and recosrd the readings in Table 2.

Table 2

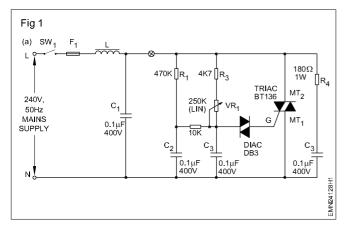
SI. No.	Applied Voltage	Current	Voltage across DIAC	Remarks
1	5V			
2	10V			
3	15V			
4	20V			
5	25V			
6	27V			
7	29V			
8	30V			

3 Get the work checked by the Instructor.

Electronic Mechanic - Power Electronic components

Construct a simple dimmer circuit using TRIAC

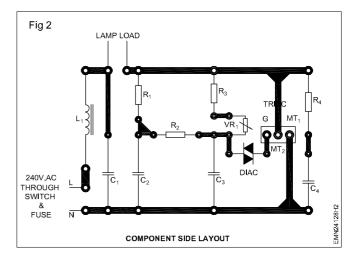
Objectives: At the end of this exercise you shall be able to


- assemble and test a lamp dimmer circuit using TRIAC and DIAC
- · test the lamp dimmer circuit using domestic fan.

Requirements Tools/Equipments/Instruments Potentiometer 250k Ω , 16 mm plastic shaft - 1 No Soldering iron 25W/230V - 1 No Capacitor 0.1 µF 400 volts - 3 Nos Trainees tool kit - 1 Set TRAIC BT136 or equivalent - 1 No Lamp load (60 watts 230V) with holder - 1 No DIAC D3202 or equivalent - 1 No Digital multimeter with probes - 1 No Inductor/Choke - 1 No **Materials/Components** (25 SWG,40 turns on 10mm ferrite rod with former made of leatheroid paper) Printed circuit Board, (as Fig 2) - 1 No SPST switch flush type, 5 amps, 240V - 1 No Resistors 180 ohms 1W, carbon film - 1 No Knob (for potentiometer) - 1 No $4.7 \text{ k}\Omega$, ½ W - 1 No 2 core mains cord, 240V/5 amps - 1 No 470 kΩ, ½ W - 1 No Solder and Flux - as regd Fuse 500 mA - 1 No Connecting wires as reqd 2 core twisted pair flexible wire - 1 No

PROCEDURE

TASK 1: Construction and testing of lamp dimmer using TRIAC and DIAC


1 Collect all the required components to assemble the circuit as shown in Fig 1

2 Plan the layout of components on the Gen.purpose PCB.

Use the dimmer circuit PCB if available as shown

3 Assemble the lamp dimmer circuit reference to the schematic diagram shown in Fig 1 & PCB layout diagram shown in Fig 2.

- 4 Get the wired circuit checked by the Instructor.
- 5 Connect the load and keeep the lamp on a safe place to avoid heatung nearby items.
- 6 Switch ON AC mains supply to the circuit, observe the lamp and increase the potentiometer position to the maximum brightness
- 7 Gradually decrease lamp brightness, and record the observations in Table 2 (as dim, bright, very bright).
- 8 Get the work checked by the Instructor.

TASK 2: Testing the lamp dimmer circuit to control the speed of domestic Fan

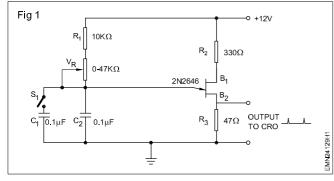
- 1 Remove the lamp load and connect the domestic fan across the terminals.
- 2 Keep the potentiometer at minimum position, switch ON AC mains supply to the circuit, gradually increase to maximum observing the rotation of fan speed.
- 3 Gradually decrease the speed and record the observations in Table 2 (as slow, medium, or fast).
- 4 Get the work checked by the instructor.

Table 1

SI. No.	Potentiometer position	Fan speed	Remarks
1	Minimum		
2	Middle		
3	Maximum		

Electronic Mechanic - Power Electronic components

Construct UJT based free running oscillator and change its frequency


Objectives: At the end of this exercise you shall be able to

- · construct and test free running oscillator
- measure time period and frequency.

Requirements			
 Tools/Equipments/Instruments Trainees tool kit CRO dual trace 20MHz Regulated DC power supply 0-30V/2A Digital multimeter with probes Materials/Components	- 1 Set - 1 No - 1 No - 1 No	 10Ω/½ W Resistor 330 Ohm/½ W Preset 47kΩ Capacitor 0.1μF Hookup wires Breadboard Miniature toggle switch SPST 	- 1 No - 1 No - 1 No - 2 Nos - 1 No - 1 No - 1 No
UJT 2646Resistor 47 ohm 1/4W	- 1 No - 1 No		

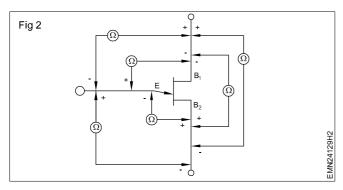
PROCEDURE

- 1 Collect all the components, test them to confirm their working condition.
- 2 Assemble the circuit on the breadboard as shown in Fig 1
- 3 Get the assembled circuit checked by the instructor.

- 4 Switch ON 12VDC power supply to the circuit
- 5 Prepare CRO for measurements, observe keeping preset value maximum
- 6 Observe the waveform across resistor R3 and record them in Table 1
- 7 Measure time period & frequency of waveform compare with calculated values and record it.
- 8 Adjust the preset, change the value of VR measure the resistance value and record in Table 1.
- 9 Repeat steps 6&7
- 10 Close switch S_1 to increase the value of 'c' and repeat steps 6&7

Table 1

SI. No	Value of R	Value of C	Calculated frequency	Mesured frequency


Wave form

Across R,

Across C

Table 2

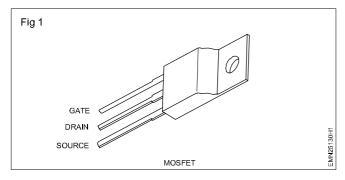
	Resistance						Conclusion
UJT No.	B ₁ & B ₂		B ₁ & G		B ₂ &G		Conclusion
	Forward	Reverse	Forward	Reverse	Forward	Reverse	

11 Get the work checked by the Instructor.

Identify various power MOSFETs by its number and test by using multimeter

Objectives: At the end of this exercise you shall be able to

• identify given MOSFET type by its number and test MOSFET using multimeter.


RequirementsTools/Equipments/InstrumentsMaterials/Components• Trainees tool kit-1 Set• MOSFET IRF 540-1 No• Digital multimeter with probes-1 NoIRF Z44-1 No• MOSFET Data book-1 NoIRF 840-1 No

PROCEDURE

TASK 1: Identification of the given MOSFET by its number and testing with a multimeter

MOSFET is easily destroyed with static electricity, always ground yourself before working with one.

- 1 Note down the number, specification & type of given MOSFET by using MOSFET data book.
- 2 Identify which pins of the MOSFET are its source, gate and drain leads. Look up the device's part number in the MOSFET data book to verify its leads layout.
- 3 For testing the MOSFET using multimeter, hold the MOSFET by the case or the tab but don't touch the metal parts of the test probes with any of the other MOSFET'S terminals until needed. Do not allow a MOSFET to come in contact with your clothes, plastic or plastic products, etc. because of the high static voltages it can generate.

4 First, touch the multimeter positive lead onto the MOSFET'S 'Gate' and negative lead onto the source.

This testing procedure is for use with a digital multimeter in the diode test-range with a minimum of 3.3 volt over diode-under-test. If your multi-meter battery is less than that it will not do the test. Check your meter for the specification.

Table 1

SI. No.	MOSFET No.	V_{GD}	V _{DS}	V _{GS}	Condition of MOSFET

- 5 Now move the positive probe to the 'Drain'. You should get a 'low' reading. The MOSFET'S internal capacitance on the gate has now been charged up by the meter and the device is 'turned-ON'.
- 6 With the meter positive still connected to the drain, touch a finger between source and gate (and drain if you like, it does not matter at this stage). The gate will be discharged through your finger and the meter reading should go high, indicating a non-conductive device/high resistance condition.

The above test means that, actually testing the cut-off voltage, which is basically the highest voltage put on the gate without making it conduct.

- 7 If the meter reading is low on both sides of VGS (or) VDS, then MOSFET is short circuted/defective.
- 8 Get the work checked by the Instructor.

- 5 Nos

Identify different heatsinks used with various power MOSFET devices

Objective: At the end of this exercise you shall be able to

· identify different shapes and sizes of heatsinks used for power MOSFETs.

RequirementsTools/Equipments/InstrumentsMaterials/Components• Trainees tool kit- 1 Set• MOSFET with assorted rating• Semiconductor data manual- 1 No(T0-3P, T0-220, T0-220AB, T0-247, T0-247 plus)

Heat sinks for given MOSFET

MOSFET Data book - 1 No

Note:

- 1 The Instructor has to provide minimum on MOSFET in each package type with label for each one.
- 2 Label all the heat sinks provided with label numbers.

PROCEDURE

- 1 Pick one of the labelled MOSFET, identify the rating current capacity & junction to case thermal resistance of given MOSFET from data sheet record the parameters in Table 1.
- 2 Identify the heat sink required for given MOSFET according to current capacity of MOSFET with reference to the chart 1.
- 3 Draw the pictorial diagram & note down the specification of heat sink selected in Table 2.

4 Repeat the above steps for all the labelled items in Table 1 & 2.

Typically an aluminum heatsink, with fins to increase the surface area, is used to dissipate this energy to air. Higher current capacity controllers use a fan to force the air to pass through the fins in order to increase heat dissipation. Water cooled heatsinks are used on MOSFET with very high current ratings.

Table 1

SI. No.	Label No.	Code no on MOSFET	package type	Voltage rating	Current rating	Junction temperature	Remarks
1							
2							
3							
4							
5							

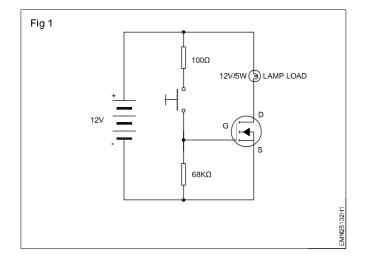
Table 2

SI. No.	Heatsink label no.	Suitable for MOSFET number	Package type number	Heatsink outline diagram
1				
2				
3				
4				
5				

5 Get the work checked by the Instructor.

Construct MOSFET test circuit with a small load

Objectives: At the end of this exercise you shall be able to


· to construct MOSFET test circuit with a small load.

Requirements			
Tools/Equipments/Instruments		Resistor 100 Ohm/ ¼ W/CR25	- 1 No
 Trainees tool kit Regulated DC power supply 0-30V/2A Multimeter with probes 	- 1 Set - 1 No - 1 No	 Resistor 68kΩ/¼ W/CR25 ON/OFF Switch Socket for MOSFET 12V lamp 	- 1 No - 2 Nos - 1 No - 1 No
Materials/Components		Hook up wires	- as requ
 MOSFET (assorted number) Resistor 1kΩ, ¼ W/CR25 	-5Nos -1No	Solder fluxConnecting wiresPCB/Bread board	- as requ - as requ - 1 No

PROCEDURE

TASK 1:

- 1 Check the working condition of all given components with multimeter.
- 2 Assemble the circuit on bread board as shown in the circuit Fig 1.

- 3 Insert MOSFET (to be checked) in socket.
- 4 Power on the supply, Press switch S and observe that lamp glows. This means MOSFET is turned ON. Note down the status of lamp in Table 1.
- 5 Thus MOSFET act as open switch if gate voltage is zero. If gate voltage is applied then the MOSFET will act as closed switch then the working condition of MOSFET is good/ON.
- 6 If the MOSFET is P-channel then reverse the polarity of power supply and lamp load then check the condition of lamp load.

Table 1

SI. No.	MOSFET No.	Туре	Status of lamp ON/OFF	MOSFET Condition

7 Get the work checked by the Instructor.

Identify IGBTs by their numbers and test by using multimeter

- 1 No

Objectives: At the end of this exercise you shall be able to

- identify IGBT by its number, specification, pin configuration type and application
- test IGBT by using multimeter.

Requirements

Tools/Equipments/Instruments

- Trainees tool kit 1 Set
- Multimeter with probes

- Materials/Components
- IGBT with assorted rating
 - ICDT data book
- IGBT data book

- 5 Nos - 1 No

PROCEDURE

TASK 1: Identification of IGBTs by their number, pin configuration of type

- 1 Note down the number printed on given device.
- 2 Identify the number in data book and note IGBT type.
- 3 Record the specification like voltage & current rating of given IGBT in Table 1.
- 4 Identify the terminals gate, emitter & collector with the help of the data book.

Table

Spe				Spec	ecifications				
SI.No.	IGBT No.	VR	CR	ID	II	OI	SS		
		(Voltage Rating)	(Current Rating)		(Input Impedence)	(Output Impedence)	(Switching Speed)	Pin confi- guration	Application

TASK 2: Testing of IGBT using multimeter

- 1 To test IGBT with multimeter use meter in diode checking mode with battery voltage of less than 20 V.
- 2 To test collector emitter junction remove the conductive foam and short the gate to the emitter
- 3 As the multimeter is in diode check mode, the collector to emitter should give a normal diode reading with positive on the collector and negative on the emitter.
- 4 The multimeter should read open or infinite with collector negative and emitter positive.
- 5 If IGBT is damaged it may test as shorted in both positive and negative directions, open in both directions, or low resistive in both directions.

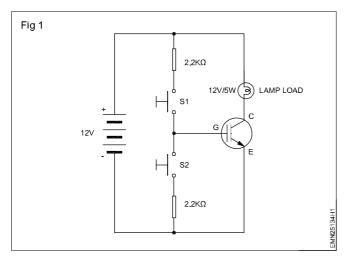
- 6 For gate oxide test keep the meter in resistance mode, where the resistance from gate to collector and gate to emitter should be infinite on a good device
- 7 If it is a damaged device it appears shorted or have leakage resistance from gate to collector and/ or emitter.

Note: The input section of IGBT junctions like a MOSFET and the output section of IGBT functions like a bipolar juntion transistor.

8 Get the work checked by the Instructor.

Construct IGBT test circuit with a small load

Objectives: At the end of this exercise you shall be able to


• to determine the working condition of IGBT by using test circuit.

Requirements				
Tools/Equipments/Instruments Materials/Components				
 Trainees tool kit Regulated DC power supply 0-30V/2A Multimeter with probes 	- 1 Set - 1 No - 1 No	 IGBT (5SMV 86M1731) Resistor 1kΩ/¼ W Resistor 2.2kΩ/¼ W ON/OFF Switch Socket for IGBT Breadboard 12V lamp 	- 5 Nos - 1 No - 2 Nos - 2 Nos - 1 No - 1 No - 1 No	

PROCEDURE

TASK 1: Construction and testing of IGBT test circuit

- 1 Collect and check the working condition of all the given components by multimeter.
- 2 Assemble the circuit on breadboard as shown in Fig 1.

- 3 Insert IGBT (to be checked) in socket.
- 4 Power ON the supply & Press switch S₁ and observe that lamp load will glow this means IGBT is turned ON.

5 Switch OFF S₁ and press switch S₂ observe that lamp will turn OFF this means IGBT is turned OFF.

Thus IGBT act as open switch if gate voltage is not provided. If positive gate voltage is applied then the IGBT will act as closed switch then the working condition of IGBT is good.

- 7 Test all given IGBT by using above procedure.
- 8 Note down the readings on Table 1.

Table 1

SI. No.	IGBT No.	S ₁ Position	S ₂ Position	Lamp ON/OFF	IGBT Condition
1		Closed	Open		
		Open	Closed		
2		Closed	Open		
		Open	Closed		
3		Closed	Open		
		Open	Closed		

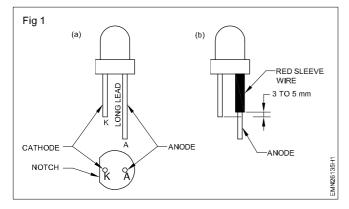
9 Get the work checked by the Instructor.

Electronics & Hardware Electronic Mechanic - Opto-Electronics

Exercise 2.6.135

Test LEDs with DC supply and measure voltage drop and current using multimeter

Objectives: At the end of this exercise you shall be able to


· measure voltage drop and current using multimeter by testing LED.

Requirements				
Tools/Equipments/Instruments		Materials/Components		
Trainees tool kitDigital multimeter with probesAmmeter (0-50) mA	- 1 Set - 1 No - 1 No	LED (assorted colour, Type & size)	- 10 Nos	

PROCEDURE

- Note down the type of LED by physical identification. (ie. Single colour 5mm LED, Miniature, flashing LED, Bi-colour or tri-colour) and for details look-into the data sheet.
- 2 Determine the Anode and Cathode terminals of the LED.

If it is a new LED, the long leg should be the anode(+) and the short leg is the cathode(-). You can also look inside the LED and the larger electrode is cathode and the smaller electrode is the anode (+).

3 Turn digital multimeter ON and set it to diode mode testing position will be marked by a diode symbol.

Note: In diode mode and resistance mode of testing using multimeter, the battery of the multimeter is engaged for providing DC bias (or) DC supply voltage required for testing.

- 4 Clip the positive(+) of meter to the predetermined anode(+) of the LED and the negative(-) to the cathode (-). The LED should glow and shows bias in display.
- 5 If the connection is correct and the LED does not light up then LED is bad.
- 6 Connect ammeter in series with the LED and measure current.

Note: Man forward voltage that can be applied to a smm LED can draw is only 20 ma. SO always use a current limiting resistor in series with an LED (for using in the circuits)

- 7 Record it in Table 1.
- 8 Repeat the procedure for testing other LEDs.

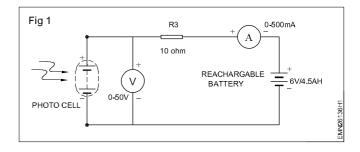
Table 1

SI. No.	Type of LED	LED ON/OFF	Voltage drop	I when LED is ON

9 Get the work checked by the Instructor.

Construct a circuit to test photo voltaic cell

Objectives: At the end of this exercise you shall be able to


- construct a simple photovoltaic (PV) system, using a PV cell(s) and a DC ammeter
- learn how the amount and wavelength of light affect the generation of electricity.

Requirements			
Tools/Equipments/Instruments		Materials/Components	
 Trainees tool kit DC ammeter 0-500 mA DC volt meter 0-24V Multimeter/DMM with probes 	- 1 Set - 1 No - 1 No - 1 No	 Small PV cells Sheets of colored transparency film in different colors Two electrical leads with crocodile clips Source of bright light or access to direct sunlight (desklamp or flashlight could be substituted) Goggles/gloves 	- as reqd - 1 Set

PROCEDURE

TASK 1: Constructing the Photovoltaic Energy System for Light Source Changes

- 1 If your PV cell mini panel does not have wires already attached to it, you should attach 15 cm of wire to each node of the PV cell. The cell should have either clips or hooks around which you can manually twist the wire.
- 2 Follow the Instructor safety instructions and attach the red wire from the PV cell to the red lead of the volt meter and ammeter (either clip or connect the wires together).
- 3 Similarly, connect the black wires from the PV cell to the negative terminal black lead of the voltmeter.
- 4 Connect the 6V/4.5Ah battery between negative terminal of Ammeter and negative terminal of solar panel.
- 4 Use the direct light/other source on the PV cell to see if you are getting a current reading. If the ammeter shows no current, check the wire connections.
- 5 Check DC voltage across battery.

TASK 2: Performing the Activity for Light

1 Keeping the sunlight constant (or the light source at constant distance), cover the PV cell(s) with a piece of coloured transparency film. Repeat with the other colours of transparency film and then use just direct sunlight alone (or light substitute). Record the current generated for all colours tested and for direct light in Data Table 1.

Note that different colours (wave lengths) of light on the solar panel produces different voltage. It is concluded that the wave length of light affects the electricity.

Table 1 Effect of Colour (Wavelength) on Cell Current

Color of Filter	Current	Remarks
Red		
Green		
Blue		
Yellow		
No filter		

2 With just 1 PV cell in the circuit, shade 1/4 of the PV cell with a piece of cardboard or paper and take a reading. Shade 1/2, 3/4 and then all of the photovoltaic cell. Record the readings in Data Table 2.

Table 2 Effect of Shading on Cell Current

Amount of Shade Current	Current
No shade	
1/4 covered	
1/2 covered	
3/4 covered	
All covered	

Note:-

Safety Precautions to be followed while handling photo-roltaic cells.

- 1 Do not press (or) apply pressure on PV cell (a) panel, they may break (or) cause injury or damage to the solar panel.
- 2 Make sure you entire PV system is properly and safely earth grounded to prevent electrical shock and injury.
- 3 When the solar panel is exposed to sunlight, do not touch any electrical lubricant (or) wiring with bare hands. Wear goggles to protect eyes form bright-light.

3 Get the work ch	ecked by the Instructor
-------------------	-------------------------

_ _ _ _ _ _ _

Construct a circuit to switch a lamp load using photo diode

Objectives: At the end of this exercise you shall be able to

construct a circuit to switch a lamp using photo diode and test the working of photo diode.

Requirements			
Tools/Equipments/Instruments		Materials/Components	
 Trainees tool kit DC Power Supply 0-30V/2A Multimeter with probes 	- 1 Set - 1 No - 1 No	 Photo diode BPW 34 POT 4.7kΩ/1W, linear Relay (SPST) 12V Transistor BC548 Lamp 12V Diode 1N4007 Bread board 	- 1 No - 1 No - 1 No - 1 No - 1 No - 1 No - 1 No

PROCEDURE

- 1 Check all given component using multimeter for good working condition.
- 2 Assemble the circuit on bread board as shown in diagram, connect a lamp to relay contact.
- 3 Switch on DC power supply, cover photo diode with card board. & observe the position of relay & load lamp. At this position relay will be activated and the lamp will produce light as shown in Fig 1.
- 4 Expose the photo diode with a light (gran IR LED or with trorch light) & note down the position of relay and lamp condition. Lamp will not produce output.
- 5 Record the observation in the Table 1.

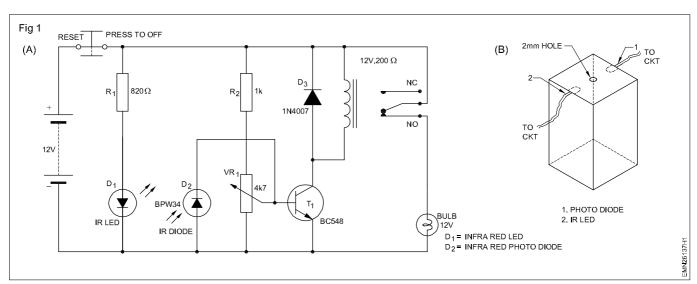


Table 1

SI. No	Light falling on photo diode	Relay position	Lamp condition
1	Darkness		
2	Exposed to Lamp light		

6 Get the work checked by the Instructor.

Construct a circuit to switch a lamp load using photo transistor

Objectives: At the end of this exercise you shall be able to

· construct a circuit to switch a lamp using photo transistor and test the working of photo transistor.

Requirements Tools/Equipments/Instruments **Materials/Components** Trainees tool kit - 1 Set Photo transistor PT 1504-6B - 1 No DC Power Supply, 0-30V/2A - 1 No POT 100kΩ/1W, linear - 1 No Multimeter DMM with probes - 1 No Transistor 2N2222 - 1 No Relay 6 V - 1 No Lamp - Green, Red 12V/5W - 1 No each Breadboard - 1 No

PROCEDURE

TASK 1: Construction and testing of photo transistor using a switch and lamp load

- Test all given component on multimeter for good working condition.
- 2 Assemble the circuit on bread board as shown in fig 1.
- 3 Cover photo transistor with card board & switch on the DC & AC power supply.
- 4 Relay will be OFF hence lamp L₂ will turn ON & L₁ will remain OFF.
- Now remove card board & expose phototransistor to light Lamp of 10W & again observe position of relay. Now relay will be activated & Lamp L₁ will turn ON & Lamp L₂ will turn OFF.
- 6 Note down position of phototransistor, Relay & Lampin observation Table 1.

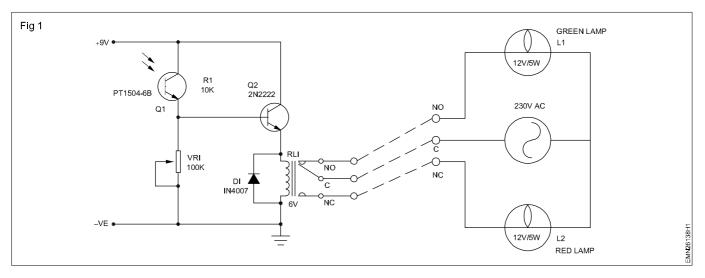


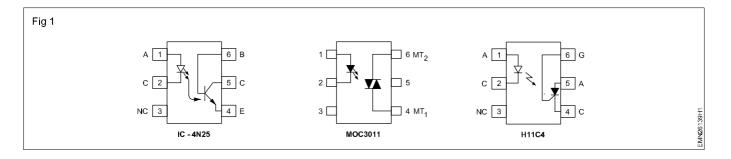
Table 1

SI . No	Light falling on photo transistor	Relay position	Lamp L ₁	Lamp L ₂
1	Darkness			
2	Exposed to Lamp light			

7 Get the work checked by the Instructor.

Identify Opto coupler input and output terminals and measure the quantum of Isolation between input/output terminals and operate a relay by connecting a switch

Objectives: At the end of this exercise you shall be able to


- identify the input & output terminal by referring data manual and measure the quantum of isolation between I/O terminals
- · operate a relay by using opto-coupler.

Requirements			
Tools/Equipments/Instruments		Materials/Components	
 Trainees tool kit DC Power Supply 0-30V/2A DC Power Supply 0-5V/2A 	- 1 Set - 1 No - 1 No	 Opto coupler IC - 4N25 (opto transistor) Opto-TRIAC IC - MOC3011 Opto-SCR-H11C4 Relay 12 V Diode 1N 4007 Lamp 40W 	- 1 No - 1 No - 1 No - 1 No - 1 No - 1 No

PROCEDURE

TASK 1: Identification of the terminals of Opto-coupler

- 1 Collect the components and note down the number & type of opto-coupler from data book.
- 2 Identify the terminal 1 by Index mark on IC.
- 3 Identify other terminals by using data book & note down the observation in Table 1 for all given opto-coupler ICs.

Table 1

SI. No	Opto coupler type No.	Input Voltage to Opto-coupler		O/P	resistan	ce/Bias	across te	erminal
		Орто-сопрієї	В	С	E	G	А	К

TASK 2: Operation of a relay by using opto-coupler

- 1 Assemble the circuit on bread board as shown in Fig 2.
- 2 Switch ON 12V DC supply and AC mains.
- 3 Note down the position of relay & load lamp.
- 4 Now apply 5V DC supply at the input terminal of optocoupler & observe the position of relay & load lamp.
- 5 Note down the observation in Table-2.
- 6 Get the work checked by the Instructor.

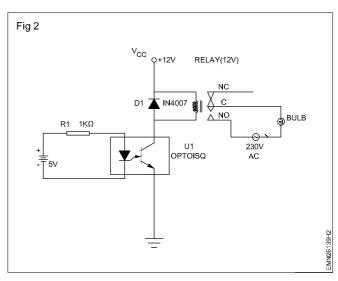


Table 2
When Input 5V is applied to the Opto-coupler

SI. No	Opto coupler type No.	Position	Position of relay		f load lamp
	type No.	NO	NC	ON	OFF

Electronics & Hardware Exercise 2.7.140 Electronic Mechanic - Basic Gates, Combinational circuits, Flip Flops

Identify different logic gates (AND, OR, NAND, NOR, EX-OR, EX-NOR, NOT ICs) by the number printed on them

Objectives: At the end of this exercise you shall be able to

- identify different logic gates by the IC number printed on them
- identify various ICs and their specifications using data sheet/semiconductor data manual.

Requirements			
Tools/Equipments/Instruments		Materials/Components	
 Trainees tool kit Logic Gates (IC) trainer Kit Digital multimeter with probes Data sheet of ICs used 	- 1 Set - 1 No - 1 No - as reqd	 Breadboard Connecting Patch Cords IC 7400, IC 7408, IC 7432 IC 74266, IC 7402, IC 7404 IC 7486 	- 1 No - as reqd - 1 No each

PROCEDURE

Note: The Instructor has to provide/ensure ICs with their number printed on them is clearly visible and all the ICs are inserted on a bread board safely.

Safety precaution: Do not touch the pins of the ICs with fingers.

- 1 Pick one of the ICs note down the number in Table -1
- 2 Refer to the data sheet/semiconductor data manual,find the logic gate function,draw the pin out diagram, mark the input, output and supply pin numbers.
- 3 Repeat the steps for remaining ICs and record the observations in Table-1.

Table 1

SI.No.	IC number	Logic gate	Symbol	Pin out diagram
1	IC 7408			
2	IC 7432			
3	IC 7404			
4	IC 7400			
5	IC 7402			
6	IC 7486			
7	IC 74266			

4 Get the work checked by the Instructor.

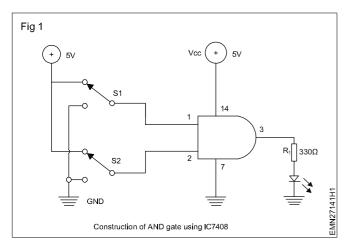
Electronics & Hardware

Exercise 2.7.141

Electronic Mechanic - Basic Gates, Combinational circuits, Flip Flops

Verify the truth tables of all logic gate ICs by connecting switches and LEDs

Objectives: At the end of this exercise you shall be able to


- . construct AND, OR, NOT, NAND, NOR and EX-OR gates using ICs
- verify truth tables of AND, OR, NOT, NAND, NOR and EX-OR gates using switches and LEDs.

Requirements			
 Tools/Equipments/Instruments Trainees tool kit Regulated DC power supply 0-30V/2A Digital multimeter with probes 	- 1 Set - 1 No - 1 No	 IC-7486 IC-7400 SPDT Switches (Miniature Toggle) IC 7404 Hook up wire, red and black Flexible wires 	- 1 No - 1 No - 2 Nos - 1 No - as reqo - as rego
Materials/Components • Breadboard	- 1 No	 Resistor/¼ W/CR25 330Ω LED 5mm, Red 	- 1 No - 1 No - 1 No
IC 7408IC - 7432	- 1 No - 1 No	Data sheets of ICs used	- as req

PROCEDURE

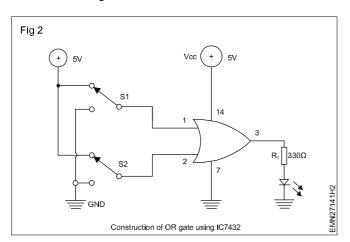
TASK 1: Construction and AND gate using IC 7408 and verification of its truth table

1 Collect all the components, check them, refer to the data sheet of the IC 7408, assemble the AND gate as shown in Fig 1 on the bread board.

- 2 Use toggle switches S_1 as input A and switch S_2 as input B.
- 3 Get the assemble circuit checked by the Instructor.
- 4 Switch ON 5VDC supply and operate switches S₁ & S₂ for different levels either in 5V position or zero volt (GND) position as shown in Table 1.
- 5 Observe the status of LED for each step of combinations, record the observations in Table 1.

Table 1

SI.No.	Input		Output
	А	В	LED status
1			
2			
3			
4			


AND gate Truth table

SI.No.	In	put	Output Y=A.B
	Α	В	Y=A.B
1	0	0	0
2	0	1	0
3	1	0	0
4	1	1	1

- 6 Verify the readings with the truth table of AND gate.
- 7 Get the work checked by the Instructor.

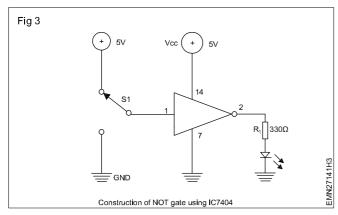
TASK 2: Construction of OR gate using IC 7432 and verification of its Truth table

1 Collect all the components, check them, refer to the data sheet of the IC 7432, assemble the OR gate as shown in Fig 2 on the bread board.

- 2 Repeat steps 2 to 5 of Task 1 and record the observations in Table 2.
- 3 Verify the readings with the truth table of OR gate.
- 4 Get the work checked by the Instructor.

Table 2

SI.No.	Input		Output
	А	В	LED status
1			
2			
3			
4			


OR gate Truth table

SI.No.	Input		Output Y=A+B
	А	В	Y=A+B
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	1

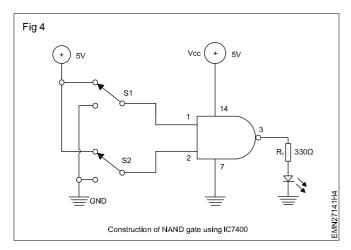
TASK 3: Construction of NOT gate using IC 7404 and verification of its Truth table

1 Collect all the components, check them, refer to the data sheet of the IC 7404, assemble the NOT gate as shown in Fig 3 on the bread board.

- 2 Use toggle switches S₁ as input A.
- 3 Repeat steps 3 to 5 of Task 1 and record the observations in Table 3.
- 4 Verify the readings with the truth table of NOT gate.
- 5 Get the work checked by the Instructor.

Table 3

SI.No.	Input Output	
	А	LED status
1		
2		


NOT gate Truth table

SI.No.	Input	Output Y=Ā
	A	Y=A
1	0	1
2	1	0

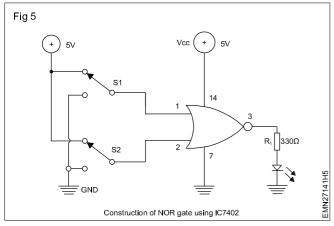
TASK 4: Construction of NAND gate using IC 7400 and verification of its Truth table

1 Collect all the components, check them, refer to the data sheet of the IC 7400, assemble the AND gate as shown in Fig 4 on the bread board.

- 2 Repeat steps 2 to 5 of Task 1 and record the observations in Table 4.
- 3 Verify the readings with the truth table of NAND gate.
- 4 Get the work checked by the Instructor.

Table 4

SI.No.	Input		Output
	А	В	LED status
1			
2			
3			
4			


NAND gate Truth table

SI.No.	Input		Output Y=A.B
	А	В	Y=A.B
1	0	0	1
2	0	1	1
3	1	0	1
4	1	1	0

TASK 5: Construction of NOR gate using IC 7402 and verification of its Truth table

1 Collect all the components, check them, refer to the data sheet of the IC 7402, assemble the NOR gate as shown in Fig 5 on the bread board.

- 2 Repeat steps 2 to 5 of Task 1 and record the observations in Table 5.
- 3 Verify the readings with the truth table of NOR gate.
- 4 Get the work checked by the Instructor.

Table 5

SI.No.	Input		Output
	Α	В	LED status
1			
2			
3			
4			

NOR gate Truth table

SI.No.	Input		Output Y=A+B
	А	В	Y=A+B
1	0	0	1
2	0	1	0
3	1	0	0
4	1	1	0

TASK 5: Construction of EX-OR gate using IC 7486 and verification of its Truth table

1 Collect all the components, check them, refer to the data sheet of the IC 7486, assemble the EX-OR gate as shown in Fig 6 on the bread board.

- 2 Repeat steps 2 to 5 of Task 1 and record the observations in Table 6.
- 3 Verify the readings with the truth table of EX-OR gate.
- 4 Get the work checked by the Instructor.

Table 6

SI.No.	Input		Output LED status
	А	В	LED status
1			
2			
3			
4			

EX-OR gate Truth table

SI.No.	Input		Output Y=A⊕B
	А	В	Y=A⊕B
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	0

Electronics & Hardware

Exercise 2.7.142

Electronic Mechanic - Basic Gates, Combinational circuits, Flip Flops

Construct and verify the truth table of all the gates using NAND and NOR gates

Objectives: At the end of this exercise you shall be able to

- construct AND, OR, NOT, NOR, EX-OR and EX-NOR gates using NAND gate
- construct AND, OR, NOT, NAND, EX-OR and EX-NOR gates using NOR gates.

Requirements Tools/Equipments/Instruments/Data Manuals IC7402 - 2 Nos Hook up wires - as regd Logic probe - 1 No 14 pin IC base - 4 Nos Trainees tool kit - 1 Set Toggle switches miniature type SPDT - 2 Nos Regulated DC power supply 0-30V/2A - 1 No **Breadboard** - 1 No Digital multimeter with probes - 1 No LED 5mm. Red - 1 No **Materials/Components** Resistor - 330Ω/1/4W - 1 No Digital IC data manual - 1 No

Note:

IC7400

- 1 The Instructor has to guide the trainees to record 5VDC given to gate input as logic high (1) and GND (zero volt) as logic low (0)
- 2 The condition of LED ON as Logic '1' and OFF as logic '0'.

PROCEDURE

TASK 1: Construction of AND gate circuit using NAND gate IC 7400 and verification of its truth table

- 2 Nos

1 Collect all the components, check them, refer to the data sheet of the IC 7400, assemble the AND gate as shown in Fig 1 on the bread board.

- Fig 1

 + 5V

 Vcc + 5V

 S1

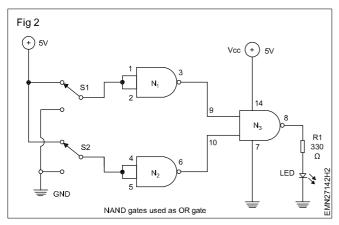
 NAND gates used as AND gate
- 2 Use toggle switches S_1 as input A and switch S_2 as input B.
- 3 Get the assembled circuit checked by the Instructor.
- 4 Switch ON 5VDC supply and operate switches S₁ & S₂ for different logic levels either in 5V position or zero volt position as shown in Table 1.

5 Observe the LED for each step of combinations, record the observations in Table 1.

AND gate Truth table

SI.No.	Input		Output
	A S ₁	B S ₂	Y=A.B
1	0	0	0
2	0	1	0
3	1	0	0
4	1	1	1

Table 1


SI.No.	Input		Output
	AS ₁	BS ₂	LED Condition
1			
2			
3			
4			

6 Get the work checked by the Instructor.

_ _ _ _ _ _

TASK 2: Construction of OR gate circuit using NAND gate and verification of its truth table

1 Rearrange the connections and assemble the OR gate circuit using NAND gates as shown in Fig 2 on bread board.

- 2 Repeat steps 2 to 5 of Task 1 and record the observations in Table 2.
- 3 Verify the readings with the truth table of OR gate.
- 4 Get the work checked by the Instructor.

Note: Use logic probe to check the status of each pin to confirm the functioning of each gate.

OR gate Truth table

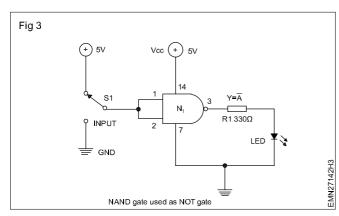

SI.No.	Input		Output Y=A+B
	А	В	Y=A+B
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	1
4	1	1	1

Table 2

5	SI.No.	Input		Output
		А	В	LED
	1			
	2			
	3			
	4			

TASK 3: Construction of NOT gate circuit using NAND gate and verification of its truth table

1 Rearrange the connections and assemble the NOT gate circuit using NAND gates as shown in Fig 3 on bread board.

- 2 Use toggle switch S₁ as input A.
- 3 Repeat steps 3 to 5 of Task 1 and record the observations in Table 3.
- 4 Get the work checked by the Instructor.

NOT gate Truth table

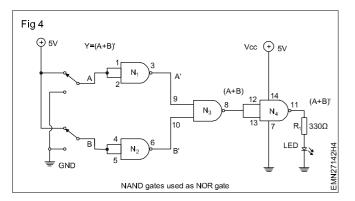

SI.No.	Input	Output	
	А	Y=Ā	
1	0	1	
2	1	0	

Table 3

SI.No.	Input	Output
	Α	LED
1	0	
2	1	

TASK 4: Construction of NOR gate circuit using NAND gate and verification of its truth table

1 Rearrange the connections and assemble the NOR gate circuit using NAND gates as shown in Fig 4 on bread board.

- 2 Repeat steps 2 to 5 of Task 1, and record the observations in Table 4.
- 3 Verify the readings with the truth table of NOR gate.
- 4 Get the work checked by the Instructor.

Note: Use logic probe to check the status of each pin to confirm the functioning of each gate.

NOR gate Truth table

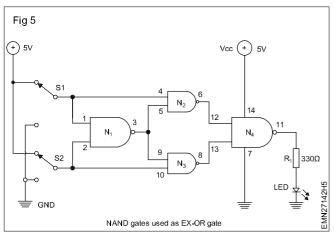

Input		Output
А	В	Y= A+B
0	0	1
0	1	0
1	0	0
1	1	0
	A 0 0 1	A B 0 0 0 1 1 0

Table 4

SI.No.	Input		Output LED
	Α	В	LED
1			
2			
3			
4			

TASK 5 : Construction of EX-OR gate circuit using NAND gate and verification of its truth table

1 Rearrange the connections and assemble the EX-OR gate circuit using NAND gates as shown in Fig 5 on bread board.

- 2 Repeat steps 2 to 5 of Task 1, and record the observations in Table 5.
- 3 Verify the readings with the truth table of EX-OR gate.
- 4 Get the work checked by the Instructor.

Note: Use logic probe to check the status of each pin to confirm the functioning of each gate.

EX-OR gate Truth table

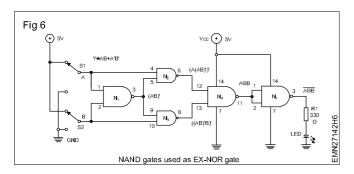

Input		Output Y=A⊕B
А	В	Y=A⊕B
0	0	0
0	1	1
1	0	1
1	1	0
	_	

Table 5

SI.No.	Input		Output LED
	А	В	LED
1			
2			
3			
4			

TASK 6: Construction of EX-NOR gate circuit using NAND gate and verification of its truth table

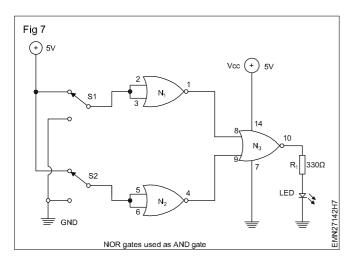
1 Rearrange the connections and assemble the EX-NOR gate circuit using NAND gates as shown in Fig 6 on bread board.

- 2 Repeat steps 2 to 5 of Task 1, and record the observations in Table 6.
- 3 Verify the readings with the truth table of EX-NOR gate.
- 4 Get the work checked by the Instructor.

Note: Use logic probe to check the status of each pin to confirm the functioning of each gate.

EX-NOR gate Truth table

SI.No.	Input		Output Y=A⊕B
	А	В	Y=Ā⊕B
1	0	0	
2	0	1	
3	1	0	
4	1	1	
	I		


Table 6

SI.No.	Input		Output
	Α	В	LED
1			
2			
3			
4			

TASK 7: Construction of AND gate using NOR gate IC 7402 and verification of its truth table

1 Collect all the components, check them, refer to the data sheet of the IC 7402, assemble the AND gate as shown in Fig 7 on the bread board.

- 2 Repeat steps 2 to 5 of Task 1, and record the observations in Table 7.
- 3 Verify the readings with the truth table of AND gate.
- 4 Get the work checked by the Instructor.

Note: Use logic probe to check the status of each pin to confirm the functioning of each gate.

AND gate Truth table

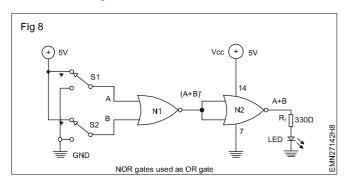

SI.No.	Input		Output Y=A.B
	А	В	Y=A.B
1	0	0	0
2	0	1	0
3	1	0	0
4	1	1	1

Table 7

Input		Output LED
Α	В	LED

TASK 8: Construction of OR gate using NOR gate IC 7402 and verification of its truth table

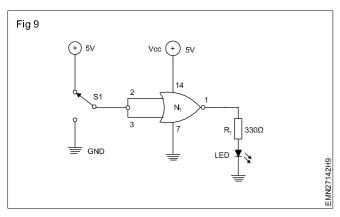
1 Collect all the components, check them, refer to the data sheet of the IC 7402, assemble the OR gate as shown in Fig 8 on the bread board.

- 2 Repeat steps 2 to 5 of Task 1, and record the observations in Table 8.
- 3 Verify the readings with the truth table of OR gate.
- 4 Get the work checked by the Instructor.

Note: Use logic probe to check the status of each pin to confirm the functioning of each gate.

OR gate Truth table

SI.No.	In	put	Output Y=A+B
	А	В	Y=A+B
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	1
		l	


Table 8

SI.No.	Input		Output LED	
	А	В	LED	
1				
2				
3				
4				

TASK 9: Construction of NOT gate using NOR gate IC 7402 and verification of its truth table

1 Collect all the components, check them, refer to the data sheet of the IC 7402, assemble the NOT gate as shown in Fig 9 on the bread board.

- 2 Repeat steps 2 to 5 of Task 9, and record the observations in Table 9.
- 3 Verify the readings with the truth table of NOT gate.
- 4 Get the work checked by the Instructor.

NOT gate Truth table

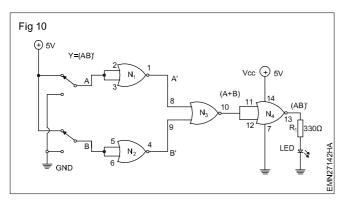

SI.No.	Input	Output
	А	Y=A
1	0	1
2	1	0

Table 9

SI.No.	Input	Output
	А	LED
1		
2		

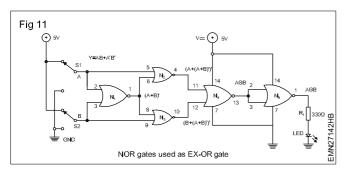
TASK 10: Construction of NAND gate using NOR gate IC 7402 and verification of its truth table

1 Collect all the components, check them, refer to the data sheet of the IC 7402, assemble the NAND gate as shown in Fig 10 on the bread board.

- 2 Repeat steps 2 to 5 of Task 9, and record the observations in Table 10.
- 3 Verify the readings with the truth table of NAND gate.
- 4 Get the work checked by the Instructor.

Note: Use logic probe to check the status of each pin to confirm the functioning of each gate.

NAND gate Truth table


Table 10

SI.No.	In	put	Output
	Α	В	LED
1			
2			
3			
4			

TASK 11: Construction of EX-OR gate using NOR gate IC 7402 and verification of its truth table

1 Collect all the components, check them, refer to the data sheet of the IC 7402, assemble the EX-OR gate as shown in Fig 11 on the bread board.

- 2 Repeat steps 2 to 5 of Task 9, and record the observations in Table 11.
- 3 Verify the readings with the truth table of EX-OR gate.
- 4 Get the work checked by the Instructor.

Note: Use logic probe to check the status of each pin to confirm the functioning of each gate.

EX-OR gate Truth table

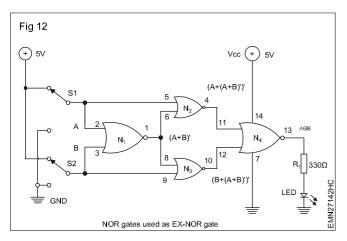

SI.No.	Input		Output		
	А	В	Y=A⊕B		
1	0	0	0		
2	0	1	1		
3	1	0	1		
4	1	1	0		

Table 11

SI.No.	Input		Output LED		
	А	В	LED		
1					
2					
3					
4					

TASK 12: Construction of EX-NOR gate using NOR gate IC 7402 and verification of its truth table

1 Collect all the components, check them, refer to the data sheet of the IC 7402, assemble the EX-NOR gate as shown in Fig 12 on the bread board.

- 2 Repeat steps 2 to 5 of Task 9, and record the observations in Table 12.
- 3 Verify the readings with the truth table of EX-NOR gate.
- 4 Get the work checked by the Instructor.

Note: Use logic probe to check the status of each pin to confirm the functioning of each gate.

EX-NOR gate Truth table

In	put	Output
A B		Y= A⊕B
0	0	1
0	1	0
1	0	0
1	1	1
	A 0 0 1	0 0 0 0 1 1 1 0

Table 12

SI.No.	Input		Output LED
	А	В	LED
1			
2			
3			
4			

Electronics & Hardware

Exercise 2.7.143

Electronic Mechanic - Basic Gates, Combinational circuits, Flip Flops

Use digital IC tester to test various digital ICs (TTL and CMOS)

Objectives: At the end of this exercise you shall be able to

- identify the IC manufacturers' names from the logo given on the IC and manufacturers data
- identify IC code number printed on the given digital IC
- identify the type of package of the given digital IC (TTL and CMOS)
- · identify the logic family of the given digital IC referring databook
- identify the pin numbers of the given Digital IC referring data book
- test the given IC using digital IC tester.

Requirements					
Tools/Equipments/Instruments/Datama	anual	Materials/Components			
 Digital IC databook Digital IC tester with manual DMM with probes 	- 1 No - 1 No - 1 No	 Assorted Digital ICs (both TTL and CMOS types) Breadboard Hook up wires 	- 10 Nos - 1 No - as reqd		

Note: The Instructor has to label all the ICs serially

Keep a minimum of 20 numbers of assorted labeled TTL and CMOS ICs for thtis exercise. Instruct the trainees to pick one IC at a time and carryout the exercise.

Demonstrate setting the controls and testing ICs using digital IC tester. No detailed procedure for using IC tester is given as different IC testers used in different institures may have different operating procedures and specification.

PROCEDURE

- 1 Identify operator controls, switches and IC socket on the digital IC tester as shown in Fig 1 with reference to the manual.
- 2 Pick one of the labeled IC from the assorted lot and record its label number.
- 3 Refer to the data manual interpret the manufacturer's logo given on the IC or alphabets used for the IC type identify and record the details in Table 1.
- 4 Identify and record the logic family supply voltage and function of the IC referring the data manual.

- 5 Count and record the number of pins on the IC.
- 6 As demonstrated by the instructor, test and record the condition of the IC using digital IC tester for atleast 10 different ICs both in TTL and CMOS types.

Note: Follow the procedure demonstrated by the instructor for setting the controls on digital IC tester while testing the IC.

7 Get the recorded information checked by the instructor for 10 different ICs.

_ _ _ _ _ _

TABLE1

SI. No.	Label No. IC	Code No. of IC	No.of pins	Logic family	Function	Package type	Maximum V _{cc} voltage	Condion of IC tested
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

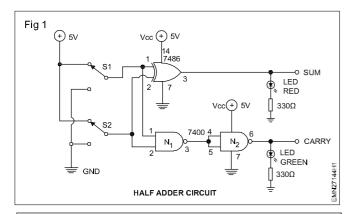
_ _ _ _ _ _

Exercise 2.7.144

Electronic Mechanic - Basic Gates, Combinational circuits, Flip Flops

Construct Half Adder circuit using ICs and verify the truth table

Objectives: At the end of this exercrise you shall be able to


· construct the half adder circuit and verify the truth table.

Requirements Materials/Components Tools/Equipments/Instruments IC-7486 with base - 1 No Soldering iron 25W/230V - 1 No IC-7400 with base - 1 No Logic probe - 1 No Data sheet of ICs used - 1 No each Trainees tool kit - 1 Set Regulated DC power supply 0-30V/2A LED 5mm Red, Green - 2 Nos - 1 No Resistor 330Ω/¼ W/CR25 - 2 Nos Digital multimeter with probes - 1 No Miniature toggle switch SPDT - 3 Nos Breadboard - 1 No Solder, flux - as regd Hook up wires - as regd

PROCEDURE

TASK 1: Construction of Half Adder circuit and verification of truth table

1 Collect all the components, check them and assemble the Half adder circuit as shown in Fig 1on breadboard.

Use 14 pin IC base on the bread board for this task.

- 2 Use toggle switch S_1 as input A and switch S_2 as input B.
- 3 Get the assembled circuit checked by the Instructor.
- 4 Switch ON 5VDC supply and operate switches S1 & S2 for different logic levels either in 5V position for zero volt (GND) position as shown in Table 1.
- 5 Observe the LEDs for each step of combinations, record your observations in Table 1.

6 Verify readings with truth table of Half Adder.

Use logic probe to check the status of each pin to confirm the functioning of the gate.

Truth Table of Half Adder

SI.	Inp	ut	Output			
No.	Α	В	Sum	Carry		
1	0	0	0	0		
2	0	1	1	0		
3	1	0	1	0		
4	1	1	0	1		

Table 1

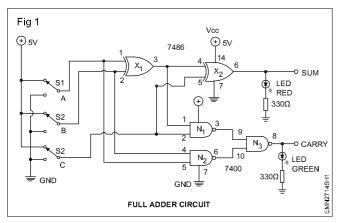
SI. No.	Ir	nput	Output LED				
	Α	В	Red (Sum)	Green (carry)			
1							
2							
3							
4							

7 Get the work checked by the instructor.

Electronics & Hardware Exercise 2.7.145 Electronic Mechanic - Basic Gates, Combinational circuits, Flip Flops

Construct Full adder with two Half adder circuit using ICs and verify the truth table

Objectives: At the end of this exercrise you shall be able to


· construct and test full adder using half adder circuits.

Requirements **Tools/Equipments/Instruments** Materials/Components Soldering iron 25W/230V IC-7486 with base - 1 No - 1 No - 1 No Logic probe - 1 No IC-7400 with base Trainees tool kit - 1 Set Data sheet of ICs used - as reqd Regulated DC power supply 0-30V/2A - 1 No LED 5mm Red, Green - 1 No each Digital multimeter with probes - 1 No Resistor 330Ω/¼ W/CR25 - 2 Nos Miniature toggle switch SPDT - 3 Nos Breadboard - 1 No Solder, flux - as regd Hook up wires - as regd

PROCEDURE

TASK 1: Construction of Full Adder using two Half Adder circuits and verification of truth table

1 Collect all the components, check them and assemble the Full adder circuit as shown in Fig 1on breadboard.

- 2 Use toggle switch S_1 as input A and switch S_2 as input B and switch S_3 as inpuct C.
- 3 Get the assembled circuit checked by the Instructor.
- 4 Switch ON 5VDC supply and operate all the switches for different logic levels either in 5V position for zero volt (GND) position as shown in Table 1.
- 5 Observe the LEDs for each step of combinations, record the observations in Table 1.
- 6 Verify readings with truth table of Half Adder.

Note: Use logic probe to check the status of each pin to confirm the functioning of the gate.

Truth table of Full Adder

	SI. No.		Input		Output			
		Α	В	С	Sum	Carry		
	1	0	0	0				
	2	0	0	1				
	2	0	1	0				
	4	0	1	1				
	4 5 6	1	0	0				
	6	1	0	1				
	7	1	1	0				
	8	1	1	1				

Table 1

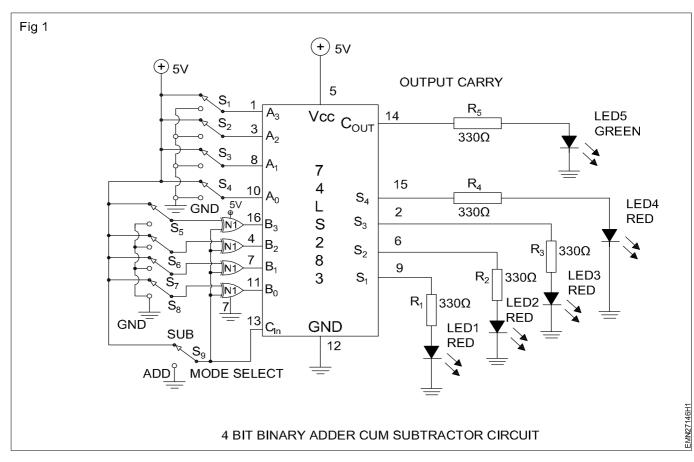
SI. No.		Input		Output			
No.	А	В	С	Sum	Carry		
1							
2							
3							
4							
5							
6							
7							
8							

7 Get the work checked by the instructor.

_ _ _ _ _ _ _

Construct the adder cum subtractor circuit and verify the result

Objectives: At the end of this exercise you shall be able to


- construct a 4 bit binary adder circuit using IC 7483, IC7486 and verify the result
- construct a 4 bit binary subtractor circuit using IC7483, IC7486 and verify the result.

Requirements			
Tools/Equipments/Instruments Soldering iron 25W/230V Trainees tool kit Regulated DC power supply 0-30V/2A Digital multimeter with probes Logic probe Data sheet of ICs used Materials/Components Miniature toggle switch SPDT	- 1 No - 1 Set - 1 No - 1 No - 1 No - as reqd	 IC-7486 with base (14 pin) IC-7483 with base (16 pin) Breadboard Solder, flux Connecting wires Resistor 330Ω ¼ W/CR25 Hook up wires LED 5mm, Red LED 5mm, Green Resistor 330Ω/¼ W/CR25 	- 1 No - 1 No - 1 No - as reqd - as reqd - 2 Nos - as reqd - 4 Nos - 1 No - 5 Nos

PROCEDURE

TASK 1: Construction and testing of 4 bit binary adder circuit

- 1 Collect all the components required, test them refer to the data sheet of ICs, asssemble the 4 bit binary adder circuit as shown in Fig 1 on bread board.
- 2 Use toggle switch S_1 as data input A_0 , switch S_2 as data input A_1 , and switch S_3 as data input A_2 , and switch S_4 as data input A_3 as shown in Fig 1.
- 3 Use toogle switch S_5 as data input B_0 , switch S_6 as data input B_1 , and switch S_7 as data input B_2 , and switch S_8 as data input B_3 and switch S_9 as mode select switch as shown in Fig 1.
- 4 Get the assembled circuit checked by the Instructor.

- 5 Switch ON 5VDC supply and operate switches S₁ to S₈ for different logic levels either in 5V position or zero volt (GND) position keeping the switch S₉ at END position to operate the circuit as 4 bit binary adder as shown in Table 1.
- 6 Observe the status of all the five LEDs for each step of combinations record them in Table 1.

Table 1

											Mod	e swit	ch=O	V		Мо	de swi	tch=5	SV.
SI.No		In	outs			Inputs		Status of LEDs			Status of LED								
	A_3	A ₂	A ₁	A ₀	B ₃	B ₂	B ₁	B ₀	Carry _{out}	Q_3	Q_{2}	Q ₁	$Q_{_{\scriptscriptstyle{0}}}$	C _{out}	Q_3	Q ₂	Q ₁	$Q_{_{0}}$	Carry _{out}
1																			
2																			
3																			
4																			
5																			
6																			
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			

7 Get the work checked by the Instructor.

TASK 2: Construction and testing of 4 bit binary subtractor circuit

Use the assembled circuit for 4 bit binary subtractor function/operation with following steps.

- 1 Set/toggle the mode select switch S_9 to 5VDC position (Logic '1')
- 2 Switch ON 5VDC supply and operate switches S1 to S8 for different logic levels either in 5V position or zero volt (GND) position as shown in Table 1.
- 3 Observe the status of all the five LEDs for each step of combinations and record them in Table 1.
- 4 Get the work checked by the Instructor.

Exercise 2.7.147

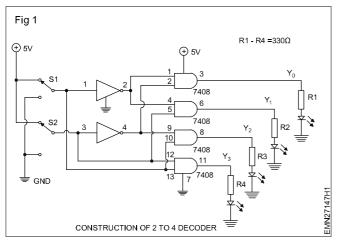
Electronic Mechanic - Basic Gates, Combinational circuits, Flip Flops

Construct and test a 2 to 4 Decoder

Objectives: At the end of this exercise you shall be able to

• construct a 2 to 4 decoder using AND, NOT gates and verify the truth table.

Requirements					
Tools/Equipments/Instruments		Materials/Components			
 Logic probe Trainees tool kit Regulated DC power supply 0-30V/2A Soldering iron 25W/230V Digital multimeter with probes Data sheet of ICs used 	- 1 No - 1 Set - 1 No - 1 No - 1 No - as reqd	 Rosin cored solder Miniature toggles 14 pin IC Base Switch SPDT Breadboard IC-7404 IC-7408 LED 5mm, Red Resistor 330Ω/¼ W/CR25 	- as reqd - 2 Nos - 2 Nos - 1 No - 1 No - 1 No - 4 Nos - 4 Nos		


Note:

- 1 The Instructor has to guide the trainees to record 5VDC given to gate input as Logic High (1) and GND as Logic Low (0).
- 2 The status of LED ON as Logic '1' and 'OFF' as Logic '0'.

PROCEDURE

TASK 1: Construction of 2 to 4 decoder circuit and verification of truth table

1 Collect all the components, check them, refer to the data sheet of the ICs assemble the 2 to 4 decoder circuit as shown in Fig 1 on breadboard.

- 2 Use toggle switch S_1 as input A and switch S_2 as input B
- 3 Get the assembled circuit checked by the Instructor.
- 4 Switch ON 5VDC supply and operate switches S₁ & S₂ for different logic levels either in 5V position or zero volt (GND) position as shown in Table 1.
- 5 Observe the status of LEDs for each step of combinations and record the observations in Table 1.

Table 1

SI. No	IN	PUT	OUTPUT LED Status					
	Α	В	Y0	Y1	Y2	Y3		
1	0	0						
2	0	1						
3	1	0						
4	1	1						

2 to 4 Decoder TRUTH TABLE:

SI. No	IN	PUT	OUTPUT LED Status					
	АВ		Y0	Y1	Y2	Y3		
1	0	0	1	0	0	0		
2	0	1	0	1	0	1		
3	1	0	0	0	1	0		
4	1	1	0	0	0	1		

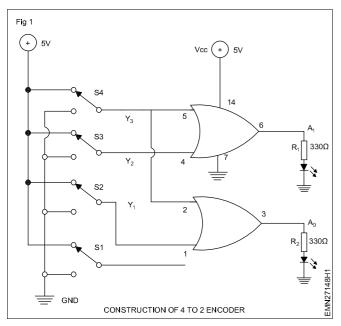
- 6 Verify the readings on the Table with the Truth table of 2 to 4 Decoder Truth table given.
- 7 Get the work checked by the Instructor.

Exercise 2.7.148

Electronic Mechanic - Basic Gates, Combinational circuits, Flip Flops

Construct and test a 4 to 2 Encoder

Objectives: At the end of this exercise you shall be able to


· construct and test 4 to 2 Encoder.

Requirements Tools/Equipments/Instruments Materials/Components Soldering iron 25W/230V Miniature toggles Switch SPDT - 4 Nos - 1 No Trainees tool kit - 1 Set Breadboard - 1 No DC power supply 0-30V/2A - 1 No IC-7432 - 1 No Digital multimeter with probes - 1 No LED 5mm, Red, Green - 1 No each Data sheet of ICs used - as regd Hook up wires - as regd Rosin cored solder - as reqd Resistor 330Ω/¼ W/CR25 - 2 Nos

PROCEDURE

TASK 1: Construction of 4 to 2 Encoder circuit and verification of its truth table

1 Collect all the components, check them and assemble the 4 to 2 Encoder circuit as shown in Fig 1 on bread board.

2 Use toggle switch S_1 as input Y_0 , switch S_2 as input Y_1 , switch S_3 as input Y_2 and switch S_4 as input Y_3 .

In the 4 to 2 Encoder using OR gates note that the switch S_1 is kept unconnected to the input, as neither of the outputs depend on it.

- 3 Get the assembled circuit checked by the Instructor.
- 4 Switch ON 5VDC supply, and operate switches S₂, S₃ and S₄ only for different logic levels either in 5V position or zero volt (GND) position as shown in Table - 1.

Table 1

SI. No		INF	PUT	OUTPUT		
	Y3	Y2	Y1	Y0	A1	A0
1	0	0	0	1		
2	0	0	1	0		
3	0	1	0	0		
4	1	0	0	0		

2 to 4 Decoder TRUTH TABLE:

SI. No		INF	PUT	OUTPUT		
	Y3	Y2	Y1	Y0	A1	A0
1	0	0	0	1	0	0
2	0	0	1	0	0	1
3	0	1	0	0	1	0
4	1	0	0	0	1	1

- 5 Observe the status of LEDs for each step of combinations and record your observations in Table 1.
- 6 Verify the readings on the Table with the Truth table of 4 to 2 Encoder given.
- 7 Get the work checked by the Instructor.

Exercise 2.7.149

Electronic Mechanic - Basic Gates, Combinational circuits, Flip Flops

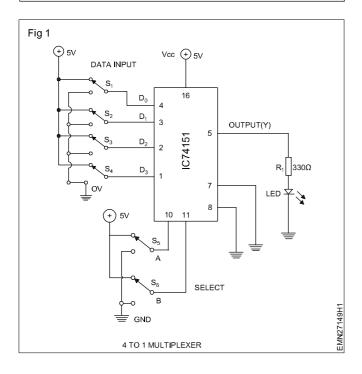
Construct and test a 4 to 1 Multiplexer

Objectives: At the end of this exercise you shall be able to

• construct and test 4 to 1 multiplexer circuit using IC74LS151.

Requirements								
Tools/Equipments/Instruments		IC 7432 IC baseDigital IC trainer kit with instruction	- 1 No					
 Soldering iron 25W/230V Trainees tool kit Regulated DC power supply 0-30V/2A Digital multimeter with probes 	- 1 No - 1 Set - 1 No - 1 No	 manual Resistor 330Ω/¼ W/CR25 Bread board LED 5mm, Red 	- 1 No - 2 Nos - 1 No - 1 No					
Materials/Components		Hook up wires	- as reqd					
Rosin cored solderIC-74LS151	- as reqd - 1 No	Miniature SPDT toggle switchData sheet of IC 74LS151	- 6 Nos - 1 No					

Safety Precaution: Ensure that the IC pins are not bent while inserting into the bread board IC Base.


PROCEDURE

Note: If the digital IC trainer kit is not available in the lab, follow the steps given for this exercise .

TASK 1 : Construction and testing of 4 to 1 multiplexer circuit using IC 74LS151

1 Collect the components required, check them and assemble the multimeter circuit as shown in Fig 1 on breadborad.

Use the 16 pin IC base for IC74LS151.

- 2 Use toggle switches either in 5V position or in Zero Volt position for different logic levels as shown in Table-1.
- 3 Get the assembled multiplexer circuit checked by the Instructor.
- 4 Switch ON the 5VDC supply to the circuit and operate switches S1 to S4 for Data inputs and S5 & S6 for selection Sequence.
- 5 Observe the LED for each setting and record it in Table 1.

Note: When data input is not available, multiplexer does not produce output for the select condition.

- 6 Verify the output by keeping data input switches S1 to S4 in 5VDC position and select S5 & S6 randomly.
- 7 Observe the LED and change Data input switches one at a time for the LED to go OFF.

It confirms that input is selected and goes to the output.

8 Repeat steps 6 & 7 with different combinations of S5 & S6 and confirm the Data selected.

Table 1

		DATA INPUTS	SEQUENCE				
SI. No.	D3	D2	D1	D0	В	Α	LED OUTPUT (Y)
1	0	0	0	1	0	0	D0-LED ON
2	0	0	1	0	0	1	D1-LED ON
3	0	1	0	0	1	0	D2-LED ON
4	1	0	0	0	1	1	D3-LED ON
5	1	1	1	1			

⁹ Get the work checked by the Instructor.

Electronics & Hardware Exercise 2.7.150 Electronic Mechanic - Basic Gates, Combinational circuits, Flip Flops

Construct and test a 1 to 4 Demultiplexer

Objectives: At the end of this exercise you shall be able to

construct and test a 1 to 4 demultiplexer circuit using IC 74LS138.

Requirements						
Tools/Equipments/Instruments Materials/Components						
 Trainees tool kit Regulated DC power supply 0-30V/2A Digital multimeter with probes Soldering iron 25W/230V Digital IC trainer kit with instruction manual 	- 1 Set - 1 No - 1 No - 1 No - 1 Set	 IC-74LS138 with data sheet 16 pin IC Base LED 5mm, Red, Green Resistors 330Ω/¼W/CR25 Hook up wires Breadboard Rosin cored solder 	- 1 No - 1 No - 4 Nos - 4 Nos - as reqd - 1 No - as reqd			

Note: If the digital IC trainer hit is not available in the lab, follow the steps given for this exercise.

PROCEDURE

TASK 1: Construction and testing of 1 to 4 Demultiplexer circuit using IC74LS138

1 Collect all the components check them and assemble the demultiplexer as shown in Fig 1 on breadboard.

Use the 16 pin base for IC74LS138.

2 Connect the toggle switch at input as shown in the circuit

- 3 Get the assembled circuit checked by the Instructor.
- 4 Switch ON the 5VDC supply to the circuit, Keep S1 at +5VDC for the data input high. Change the settings of switches S2 and S3 for different combination of Data select sequence as shown in Table -1.
- 5 Observe the LEDs for each setting and record the status in Table -1

Note: When data input is not available, Demultiplexer does not produce output for that condition in any of the Data output pins.

- 6 Verify the output by keeping the Data input switch S1 to ground, Select Switch S2 & S3 randomly.
- 7 Observe the LED, Change switches S2 & S3 to other three combinations, for whether any of the LEDs to glow.
- 8 Repeat steps 6 and 7 by keeping the switch S1 at +5VDC and confirm the LEDs are glowing independently as per the selection sequence in Table -1

Table 1

SI. No.		ection uence		Output channels(Pin Nos.) LED ON =1 LED OFF = 0			Remarks				
	А	В	Y0 pin 15	Y1 pin 14	Y2 pin 13	Y3 pin 12	Y0 LED	Y1 LED	Y2 LED	Y3 LED	
1											
2											
3											
4											
5											

9 Get the work checked by the Instructor.

Exercise 2.7.151

Electronic Mechanic - Basic Gates, Combinational circuits, Flip Flops

Identify different Flip-Flop ICs by the number printed on them

Objectives: At the end of this exercise you shall be able to

• identify different Flip Flop by the number printed on the ICs.

Requirements

Tools/Equipments/Instruments

• Trainees tool kit - 1 Set

Aids: Data sheet of ICs used for this exercise

Materials/Components

74 LS 73 74 LS 74 74 LS 76 74 LS 107 74 LS 109

- 1 No each

Note: Instructor has to label the different types of logic gates ICs.

PROCEDURE

- 1 Collect the labelled flipflop ICs from the Instructor
- 2 Pick one of the IC from the lot, and identify the code number printed on the IC and noted in Table -1
- 3 Refer to the data sheet of the IC, draw the pinout diagram and mark the details in Table 1.
- 4 Repeat the steps 2 and 3 for remaining labelled logic gates.

Note:

- 1 The Instructor has to provide/ensure the Flipflop ICs with their number printed on them is clearly visible.
- 2 Insert all the ICs on the breadboard.

Safety Precaution: Do not touch the pins of ICs with fingers.

Table 1

SI.No.	IC Number	Logic gates function	Symbol	Pinout diagram
1		74LS73		
2		74LS74		
3		74LS76		
4		74LS107		
5		74LS109		

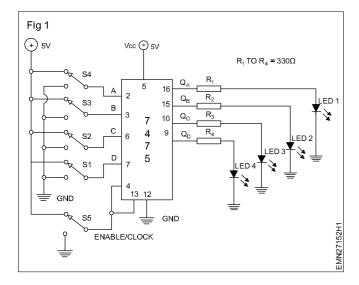
5 Get the work checked by the Instructor.

Exercise 2.7.152

Electronic Mechanic - Basic Gates, Combinational circuits, Flip Flops

Construct and test four bit latch using 7475

Objectives: At the end of this exercise you shall be able to


Construct and test four bit latch using IC 7475

Requirements					
Tools/Equipments/Instruments Materials/Components					
 Trainees tool kit Regulated DC power supply 0-30V/2A Digital multimeter with probes Data sheet of IC7475 	- 1 Set - 1 No - 1 No - 1 No	 Breadboard IC-7475 (D-Latch) with base LED 5mm, Red Resistors 330Ω/¼ W/CR25 Miniature toggle Switch SPDT Hook up wires 	- 1 No - 1 No - 4 Nos - 4 Nos - 5 Nos -as reqd		

PROCEDURE

TASK 1: Construction and testing of fourbit batch circuit using IC7475

1 Collect all the components, check them refer to the data sheet of the IC, assemble the 4 bit latch circuit as shown in Fig 1 on breadboard.

Use the 16 pin IC base on the breadboard for this exercise.

- 2 Use toggle switch S_1 as data input A, switch S_2 as data input B, switch S_3 as data input C, switch S_4 as data input D and switch S_5 as Enable/clock input.
- 3 Get the assembled circuit checked by the Instructor.
- 4 Switch ON 5VDC supply and operate switches S₁ to S₅ for different logic levels either in 5V position or zero volt (GND) position as shown in Table 1.
- 5 Observe the LEDs for each step of combinations, record them in Table 1.

Table 1

						Enable	e/clock =1			Enable/	clock =0	
SI.No		Inp	uts			Outp	ut LEDs		Output LEDs			
	Α	В	С	D	Q_{A}	$Q_{_{\rm B}}$	Q_{c}	$Q_{_{D}}$	Q _A	$Q_{_{\rm B}}$	$Q_{\rm c}$	Q _D
1	0	0	0	0								
2	0	0	0	1								
3	0	0	1	0								
4	0	0	1	1								
5	0	1	0	0								
6	0	1	0	1								
7	0	1	1	0								
8	0	1	1	1								
9	1	0	0	0								
10	1	0	0	1								
11	1	0	1	0								
12	1	0	1	1								
13	1	1	0	0								
14	1	1	0	1								
15	1	1	1	0								
16	1	1	1	1								

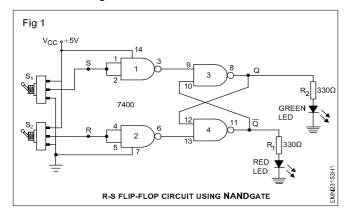
⁶ Get the work checked by the Instructor.

Exercise 2.7.153

Electronic Mechanic - Basic Gates, Combinational circuits, Flip Flops

Construct and test R-S Flip-flop using IC 7400 with clock and without clock pulse

Objectives: At the end of this exercise you shall be able tos


- · construct and test R-S flip-flop using IC 7400 without clock pulse
- construct and test RD flip-flop with clock pulse.

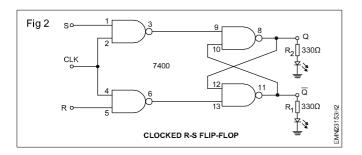
Requirements						
Tools/Equipments/Instruments Materials/Components						
 Trainees tool kit DC power supply 0-30VDC/2A Digital multimeter with probes 	- 1 Set - 1 No - 1 No	 Breadboard IC-7400 NAND gate with data sheet Miniature toggles switch Hook up wires LED 5mm, Red, Green Resistor 330Ω/¼ W/CR25 	- 1 No - 1 No - 2 Nos - as reqd - 1 No each - 2 Nos			

PROCEDURE

TASK 1: Construction and testing of R-S Flip-Flop without clock pulse using IC 7400

1 Collect all the components required, check them and assemble the RS flipflop circuit on the breadboard as shown in Fig 1

- 2 Get the assembled RS flipflop circuit checed by the Instructor.
- 3 Switch ON 5DVC supply to the circuit, use switches $\rm S_1$ and $\rm S_2$ for setting input logic levels as shown in Fig 1.
- 4 Operate the switches to apply different logic levels and observe corresponding output.
- 5 Record the status of LEDs for each step of logic levels.


Table 1
RS flip-flop using NAND gate

In	put		Output			
S	R	Q	Q - LED Status (ON/OFF)	Q	Q - LED Status (ON/OFF)	Operating Mode
0	1					Set
1	1					No Change
1	0					Reset
1	1					No Change
0	0					Forbidden

6 Get the work checked by the Instructor.

TASK 2: Construction and testing of RS flipflop with clock pulse using IC 7400

1 Modify the RS flipflop circuit into clocked RS flipflop circuit as shown in Fig 2.

- 2 Connect switches S1 and S2 at R and S inputs respectively.
- 3 Switch ON 5VDC supply to the circuit, operate switches S1,S2 apply differnt logic levels to the input keeping clock input at ground/negative.
- 4 Observe the status of LEDs for the above four steps and record in Table 2.
- 5 Connect the clock input to +5VDC and repeat steps 3 and 4 and record the obsevations for next four steps.

Table 2

Clock		Input		Output					
Input	S	R	Q	Q-LED Status (ON/OFF)	Q	Q-LED Status (ON/OFF)			
0	0	1							
0	1	0							
0	1	1							
0	0	0							
1	0	1							
1	0	0							
1	1	0							
1	0	0							
1	1	1							

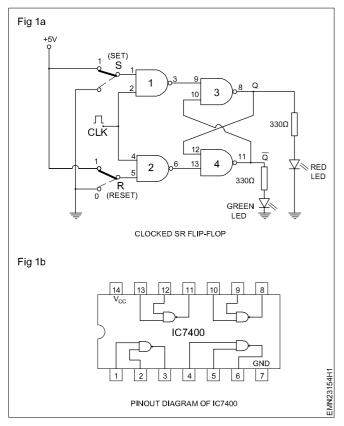
6 Get the work checked by the Instructor.

Exercise 2.7.154

Electronic Mechanic - Basic Gates, Combinational circuits, Flip Flops

Verify the truth tables of Flipflop ICs (RS, D, T, JK, MSJK) by connecting switches and LEDs

Objectives: At the end of this exercise you shall be able to


- · construct and verify the truth table of RS flip flop by connecting switches and LEDs
- · construct and verify the truth table of D flip flop by connecting switches and LEDs
- construct and verify the truth table of T.flip flop by connecting switches and LEDs
- construct and verify the truth table of JK flop by connecting switches and LEDs
- construct and verify the truth table of JK flip flop by connecting switches and LEDs.

Requirements			
 Tools/Equipments/Instruments Trainees tool kit DC power supply - 0-30V/2A DMM with probes 	- 1Set - 2 Nos - 1 No	 IC MC74HC73 (Dual/JKFlip-Flop) IC 74LS76 (JK-FF) Resistors 330Ω/¼ W/CR25 LED (Red,Green) Toggle switch 	- 1 No - 1 No - 4 Nos each - 1 No each - 4 Nos
Materials/Components		 Connecting wire 	- as reqd
BreadboardIC 74 HC00 (Quad Nand Gate)IC 74LS10 (3 Input NAND)	- 1 No - 2 Nos - 1 No	 Battery (9V) Aids: • Semicondutor digital IC-Data • charts 	- as reqd manual

PROCEDURE

TASK 1: Construction of RS flipflop circuit and verification of the truth table.

• Collect the materials, check them and assemble RS flipflop circuit on a breadboard as shown in Fig 1a.

- Get the circuit checked by the Instructor.
- Apply different Inputs to S and R as given in truth table 1 and record the corresponding output levels and the status of the LED.
- Thus for different inputs at S and R the corresponding output can be seen through LED Q and Q.

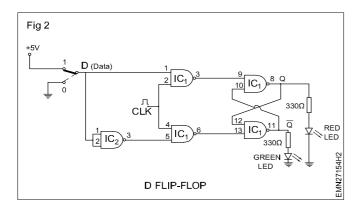
Table 1
Truth table of clocked SR Flip-flop

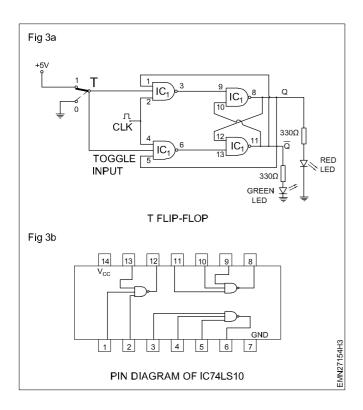
CLK	INPUT		OU	TPUT	State of Flip flop
Clock	S	R	Q	Q	
LOW	Х	Х	0	1	Previous state
HIGH	0	0	0	1	No state
HIGH	0	1	0	1	Reset
HIGH	1	0	1	0	High
HIGH	1	1	Х	Х	In terminate

· Get the work checked by the Instructor.

TASK 2: Construction of D flipflop circuit and verfication of the truth table

- Assemble a D flipflop circuit by referring to Fig 2 on a bread board
- · Get the circuit checked by the instructor.
- Apply different input to D Flip Flop as given in the truth table and verify the corresponding output level and the status of LEDs at Q and Q of the FF.




Table 2
Truth table of D Flip-Flop - clocked

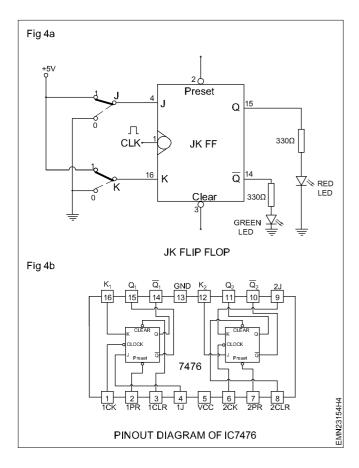
Clock	INPUT		OUTPUT		
	D	Q	Q		
LOW	х	0	1		
HIGH	0	0	1		
HIGH	1	1	0		

Get the work checked by the Instructor.

TASK 3: Construction of T.flip flop circuit and verification of the truth table

 Assemble a T.flipflop on a breadboard as shown in Fig 3a.

- · Get the circuit checked by the Instructor
- Apply different inputs to toggle FF as given in the truth table at table and verify the corresponding output level and the status of LED
- Thus for different inputs at T.flip flop corresponding outputs can be seen through LEDs Q and Q'.


Table 3

Clock	INPUT	OUTPUT		Status of	
High/Low	T	Q	Q	output	
Low	x	0	1	Previos	
High	0	0	1	No change	
High	1	1	0	Output- toggles	

Get the work checked by the Instructor.

TASK 4: Construction of JK flip-flop circuit and verification of the truth table

 Assemble a Jk flip-flop circuit by referring to Fig 4 on a bread board

- Get the circuit checked by the Instructor.
- Apply different inputs J and K, as given in the truth table 4 and verify the corresponding output levels and the status of LEDs.
- Thus for different inputs of JK flip-flop corresponding outputs can be seen through LEDs Q and Q.

Table 4
Truth table of JK Flip Flop

Clock Input H/L		INP	OUTPUTS			
	Preset	Clear	J	K	Q	Q
Х	0	0	Х	Х	1	1
Х	0	1	Х	Х	1	0
Х	1	0	Х	Х	0	1
L	1	1	0	0	0	Q
L	1	1	1	0	1	0
L	1	1	0	1	0	1
L	1	1	1	1	Toggles	Toggles
L	1	1	Х	Х	Q	Q

• Get the work checked by the Instructor.

TASK 5 : Construction of a master -slave JK flip-flop circuit and verification of the truthtable

- Assemble a MSJK flip-flop circuit by referring to Fig 5 on a breadboard
- Get the circuit checked by the Instructor
- Apply different Inputs J and K, MSJK as given in the truth table 5 and verify the corresponding output levels and status of LEDs.
- Thus for different Inputs of MSJK flip-flop corresponding outputs can be seen through LEDs Q and Q'

Note: MS JK FF.

It may be noted that in the Fig 5. the output of the master J-K FF is led to the input of slave FF. the outputs of slave - FF is used as leedback inputs to master J-k FF. The clk pulse is inverted and applied to slave FF. So the inputs are received by the slave FF only during trailing edge of clock pulse [logic-level-0]. Hence the Master - slave Jk Flip-Flop is a "Synchronons' device as it a passes data with the timing of the clock signal.

When Master receives Input during positive clock signal, slave FF outputs are said to be in latched condition (means no change).

In the truth table, $\rm M_1$ and $\rm M_2$ are outputs of Master FF and Q & Q are the outputs of slave FF.

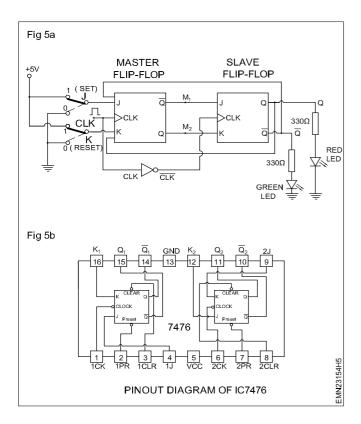


Table 5
Truth table of master slave JK Flip Flop

Trigger	Inputs		Output							
		Present state		Intermediate		Next state		Inference		
CLK	J	K	Q	Q	M1	M2	Q	Q		
\uparrow			0	1	0	0 1		hed		
\rightarrow			0	1	Latc	hed	0	1		
↑	0	0	1	0	1	0	Latc	hed	No Change	
\			1	0	Latc	hed	1	0		
1			0	1	0	1	Latc	hed		
↓	0	1	0	1	Latched		0	1	Reset	
↑			1	0	0	1	Latc	hed	Neset	
\			1	0	Latc	hed	0	1		
1			0	1	1	0	Latc	hed		
↓	1	1	0	0	1	Latc	hed	1	0	Set
\uparrow						1	0	1	0	Latc
↓			1	0	Latched		1	0		
↑			0	1	1	0	Latc	hed		
\	_ 1	1 1	0	1	Latc	hed	1	0	Toggles	
↑			1	0	0 1		Latched		- 33	
\			1	0	Latc	hed	0	1		

• Get the work checked by the Instructor.

Electronic Mechanic - Electronic Circuit Simulator

Prepare simple digital and electronic circuits using the software

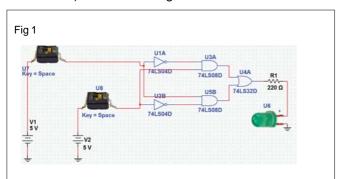
Objectives: At the end of this exercise you shall be able to

- construct EX-OR gate using IC7404, 7408 and 7432 by the simulation software
- construct a positive shunt clipper circuit using discrete components by simulation software.

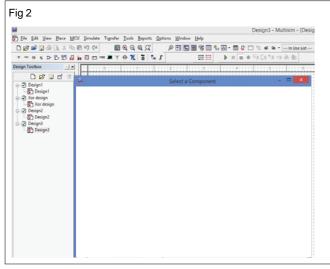
Requirements

Tools/Equipments/Instruments

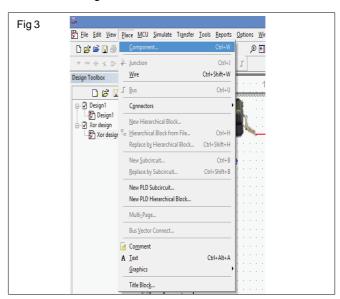
 Personal computer installed with simulation software like TINA/Multisim or similar software - 1 No

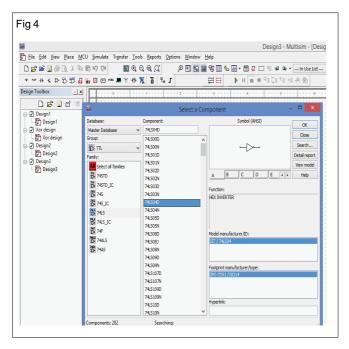

Printer - 1 No

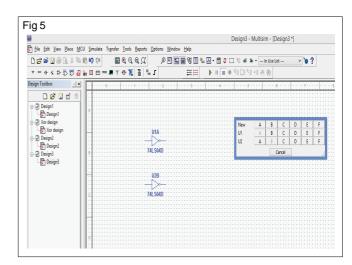
Note: This exercise has been developed using the multisim simulatiom software. The instructor has to follow/guide the trainees as per the steps/sequence with reference to the software available in the Lab/computer.

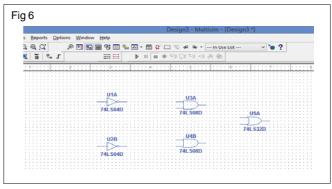

PROCEDURE

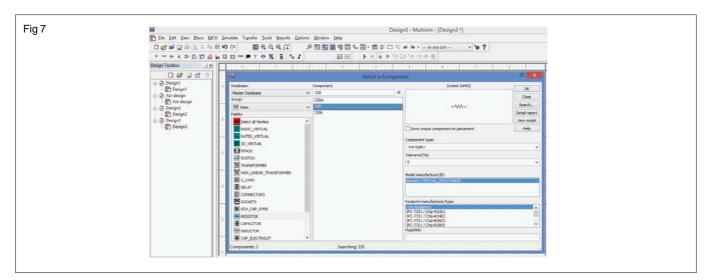
TASK 1: Construction of EX-OR gate using simulation software

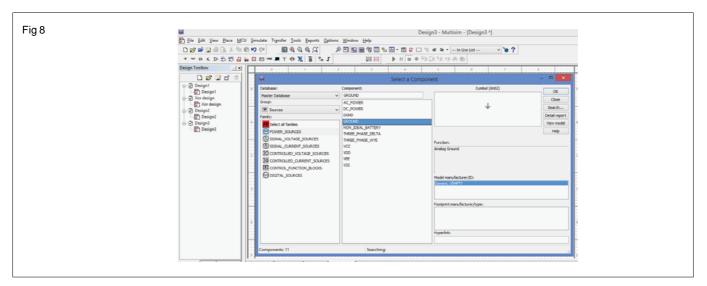

1 Select the circuit diagram to construct using simulation software. (For example the XOR gate is selected for this exercise) as shown in Fig 1.

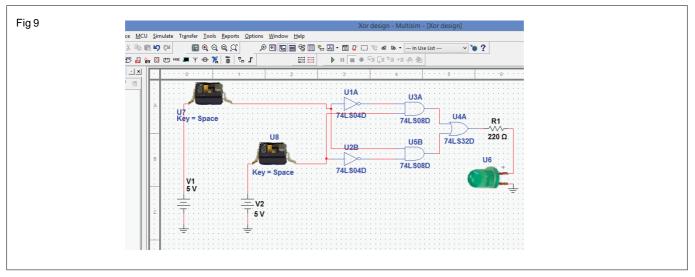

2 Switch ON computer, open the simulation software through the windows start menu or click on the simulator icon on your desktop and get the first screen as shown in Fig 2.


3 Click on **Place** menu and pull down the options as shown in Fig 3.



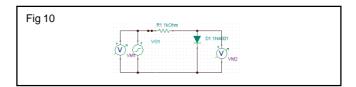

4 Click on component group, select TTL and scroll to 74LS and select the required IC (74LS04D) and click OK as shown in the Fig 4.

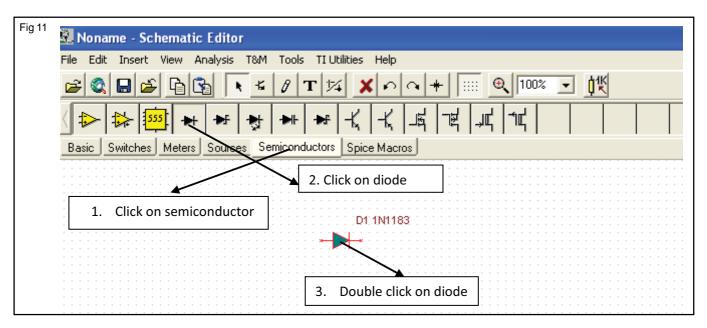

- 5 Click on A and OK, if more than one gate is required click on A and B, etc. as shown in the Fig 5.
- 6 Follow the step 4&5 to select the other logic gates 7408 and 7432 as shown in Fig 6.
- 7 Select the required resistor by referring the figure given in Fig 7 and click **OK.**

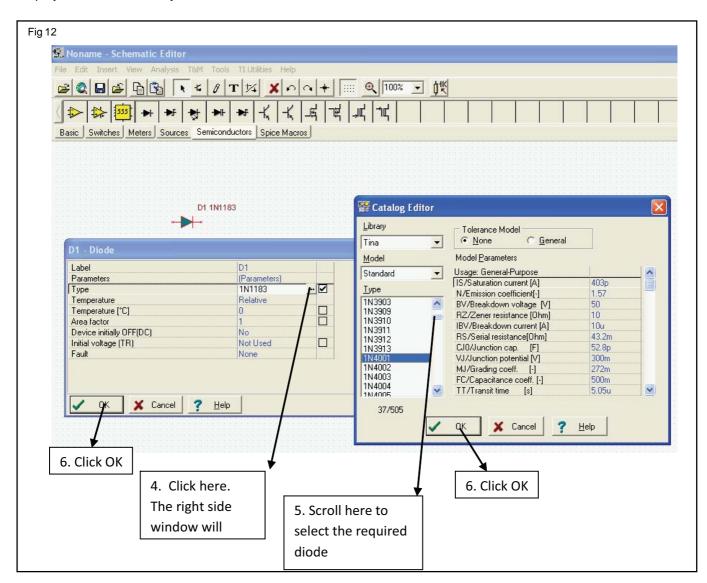


- 8 Select the required LED and click OK.
- 9 Add the power supply and ground to the circuit as shown in Fig 8.

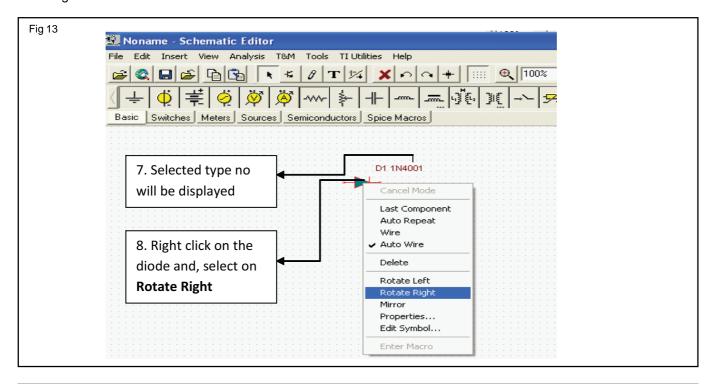
- 10 Make the wiring of the circuit by following Fig 1. Keep the cursor at one node of the component a dot will appear, move the cursor to the place of wiring the dot will appear at that node, now click the mouse to finish the wiring.
- 11 Double click on the power supply and change the label as A and B and set the voltages to 0.
- 12 Double click on the LED and change the label as C as shown in Fig 9 and save it.

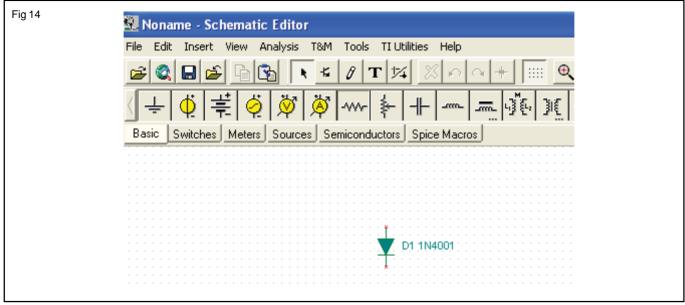



13 Get the work checked by the Instructor.

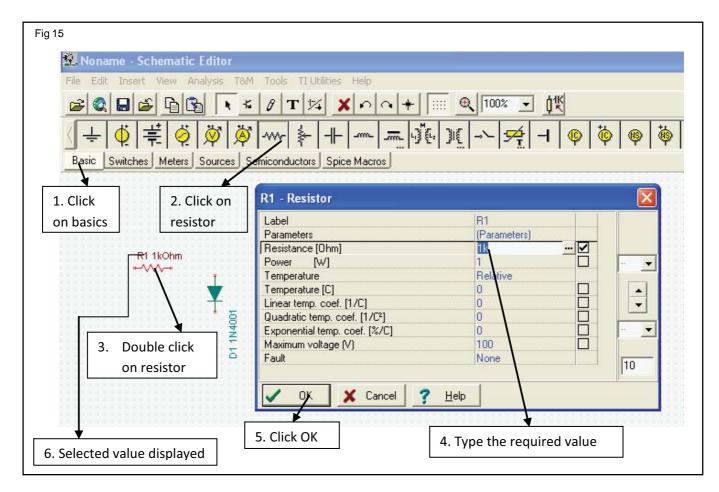

TASK 2: Construction of positive shunt clipper circuit using simulation software

- 1 Select the positive shunt clipper circuit by referreing to the circuit as shown in in Fig 10.
- 2 Switch ON the computer, double click on the simulator icon on the desktop.
- 3 Click on semiconductor and then click on diode, drag the diode into the user area as shown in Fig 11
- 4 Double click on the diode in the user area and click on the TYPE.



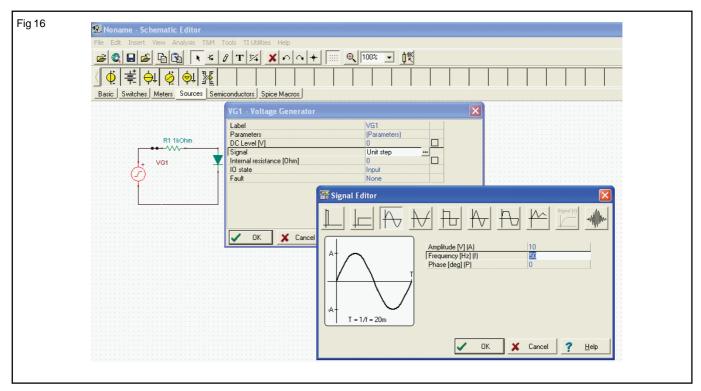


- 5 Select the suitable diode as shown in Fig 12 and Click **on OK** tab.
- 6 Ensure that the selected diode type number is displayed near the diode symbol.


7 Right click on the diode select **Rotate Right** if you want to place the diode in the vertical position as shown in Figs 13 & 14.

- 8 Click on **Basic menu to select a resistor and** click on resistor, drag the resistor into the user area.
- 9 Double click on selected resistor, type the value of resistor and click OK as shown in Fig 15.

Ensure that the selected resistor value is displayed near the resistor symbol.



10 Keep the cursor at one of the resistor terminal and drag the mouse towards the terminals of the diode make the wiring.

Refer the circuit in figure 10 for making other connections.

- 1 Keep the cursor at the red dot of one of the terminal and then drag the mouse, till the red dot of the other device where you want to make the wiring.
- 2 If any component/device is edited by double clicking on it, the symbol will appear red, otherwise it appear in green colour.
- 3 Press ESC on the keyboard if you have clicked on any symbol which you donot want to use in the circuit.

- 11 Click on the **Sources** menu to connect a voltage generator and voltmeters.
- 12 Click on the **voltage generator** dialog box and double click on the generator symbol.
- 13 Click on Signal and then Unit step dialog box.
- 14 Click on the required waveform appearing in the pop up window as shown in Fig 16.
- 15 Click on amplitude, frequency and phase to select the required value respectively and click OK and save the circuit.

16 Get the work checked by the Instructor.

Electronic Mechanic - Electronic Circuit Simulator

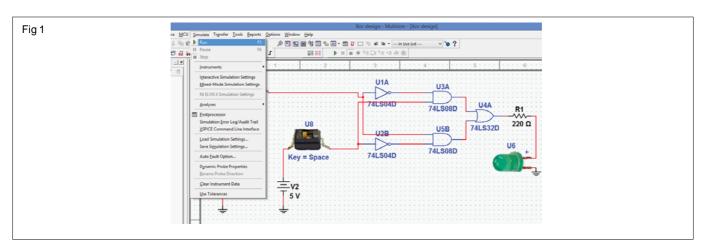
Simulate and test the prepared digital and analog circuits

Objectives: At the end of this exercise you shall be able to

- · test the prepared digital circuits using simulation software
- · test the prepared analog circuits using simulation software.

Requirements

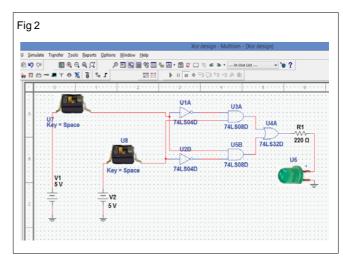
Tools/Equipments/Instruments


 Desk top computer with simulation software installed

- No

PROCEDURE

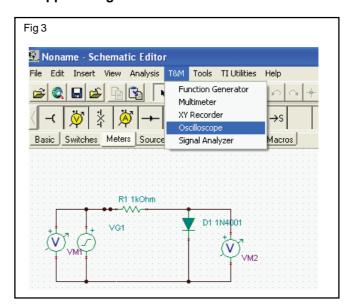
TASK 1: Testing the constructed digital circuit (OR gate) using simulation software

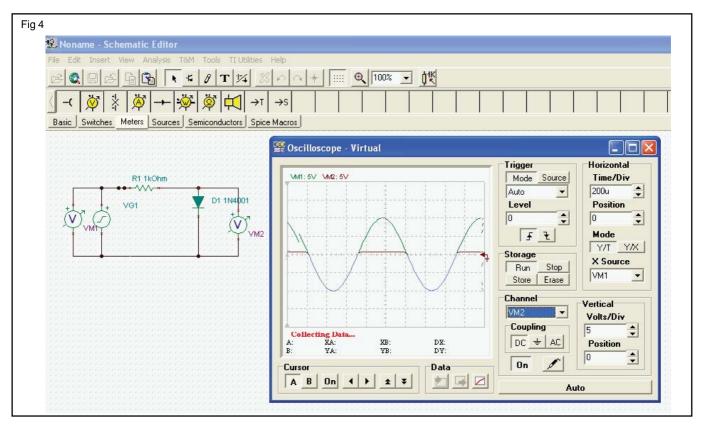

- 1 Switch ON the computer, open the simulation software and open the saved OR gate circuit.
- 2 Click on simulate menu to run the circuit as shown in Fig 1.

3 Modify the supply voltages as shown in the truth table and verify the truth table (If the output is one, the arrow in the LED will become RED (if red LED is selected; otherwise respective colour as shown in Fig 2, if the output is zero the arrow will be no glow).

Truth table of OR gate

S ₁	S ₂	LED condition
Open	Open	
Open	Close	
Close	Open	
Close	Close	




4 Get the work checked by the Instructor.

TASK 2: Testing the prepared analog circuit positive shunt clipper using simulation software

- 1 Open the saved positive shunt clipper circuit.
- 2 Click on meters on the menubar.
- 3 Click and drag **volt meter** and connect across the voltage generator.
- 4 Once again Click and drag **volt meter** and connect across the diode (output terminal) as shown in Fig 3.
- 5 Click on **T&M** on the menubar, Select **oscilloscope** and click on it.
- 6 On pop up window Click on **Run** and observe the wave form displayed in the CRO.
- 7 Adjust **Time/div** and **Volt/div positions** to the suitable value as shown in Fig 4.
- 8 So that the waveform clearly seen select second channel by the probe in the CRO and click on the output terminal get both the waveforms visible on the CRO.

9 Click on stop, trace the waveforms and save it.

Save the circuit, so same circuit may be used later for revision.

10 Get the result checked by the Instructor.

Exercise 2.8.157

Electronic Mechanic - Electronic Circuit Simulator

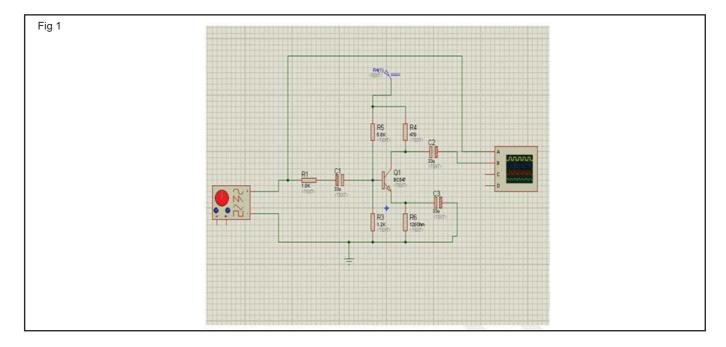
Convert the prepared circuit into a layout diagram

Objectives: At the end of this exercise you shall be able to

- · construct a single stage transistor amplifier using simulation software
- construct the prepared circuit into a layout diagram using simulation software.

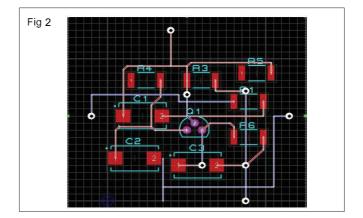
Requirements

Tools/Equipments/Instruments


 Personal computer installed with simulation software

- 1 No

PROCEDURE


TASK 1: Construction of a single stage transistor amplifier circuit using simulation software

- Switch ON the computer, double click the icon on the desktop, open the software and pick the required components from the transistor amplifier circuit.
- 2 Place the required components, assemble the circuit in the work sheet area as shown in Fig 1.
- 3 Select required junction dot, terminal lead place in circuit for coupling required to construct wiring.
- 4 Connect the necessary equipments and instruments to the circuit as shown and save it.
- 5 Get the work checked by the Instructor.

TASK 2: Conversion of the prepared circuit into a layout diagram.

- 1 Open the circuit for conversion in the user area.
- 2 Click file menu, select convert PCB option and open PCB layout.
- 3 Click view menu, select grid size, and board outline.
- 4 Click and drag the components into the created layout.
- 5 Click for auto routing and save the lay out diagram as shown in Fig 2.
- 6 Get the work checked by the Instructor.

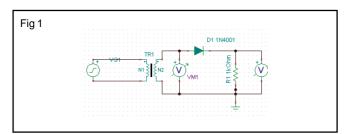
Electronic Mechanic - Electronic Circuit Simulator

Prepare simple, power electronic and domestic electronic circuit using simulation software

Objectives: At the end of this exercise you shall be able to

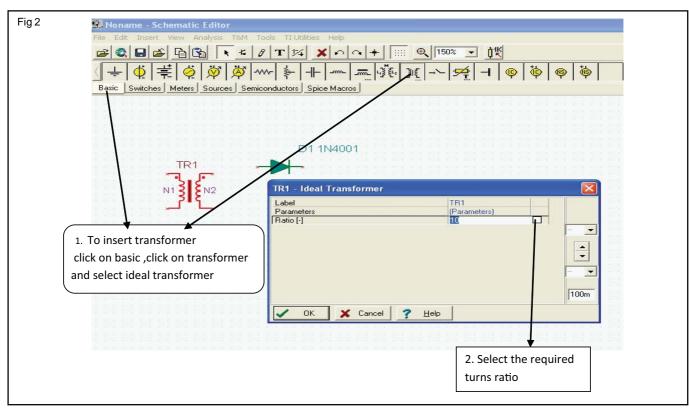
- prepare a simple power electronic circuit (half wave rectifier) using simulation software.
- · construct a domestic electronic circuit using simulation software.

Requirements

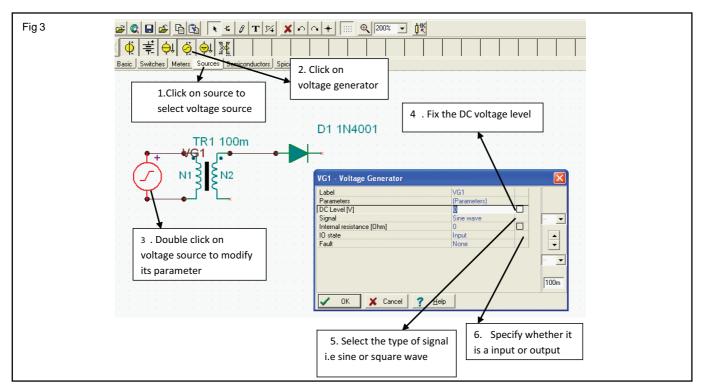

Tools/Equipments/Instruments

 Desk top computer installed with simulation software

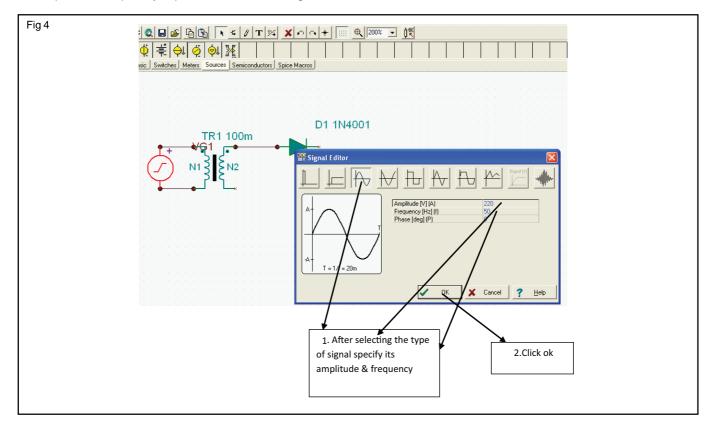
PROCEDURE

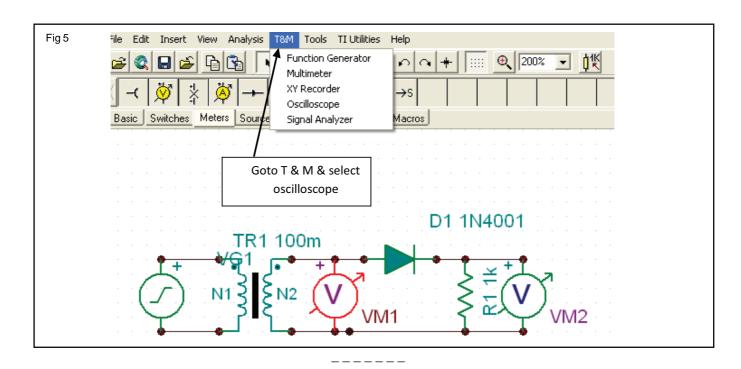

TASK 1: Construction of simple power electronic circuit (half wave rectifier) using simulation software

1 Select the components required for constructing the half wave rectifier as shown in Fig 1.



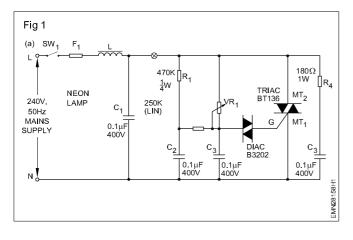
2. Switch ON the computer and double click on the simulator icon available in the desk top.


- 3 Refer to the Ex No. 2.8.155, Task 2, follow steps and select the required resistor, diode and voltmeter by clicking on them.
 - 1 If you need to change the type of diode double click on diode & change its type.
 - 2 To rotate the diode right click on it & select rotate option.
- 4 Click on Basics menu and on transformer, select ideal transformer.
- 5 Double click on the transformer, select the required turns ratio as shown in Fig 2.

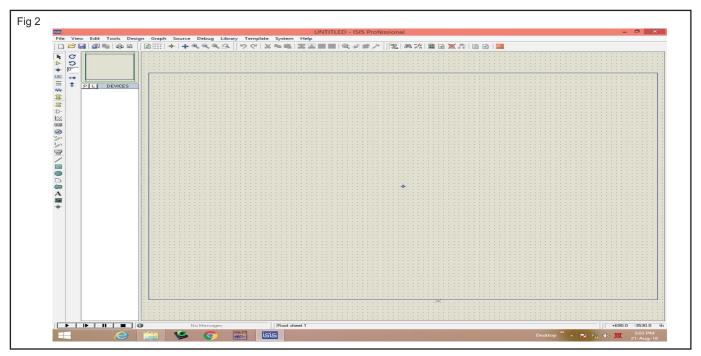

- 6 Click on **source** menu and insert the voltage source.
- 7 Click on **voltage generator** and double click on voltage generator to fix the parameters as shown in Fig 3.

8 Click on signal dialogue box, set the type of waveform, amplitude, frequency & phase as shown in Fig 4.

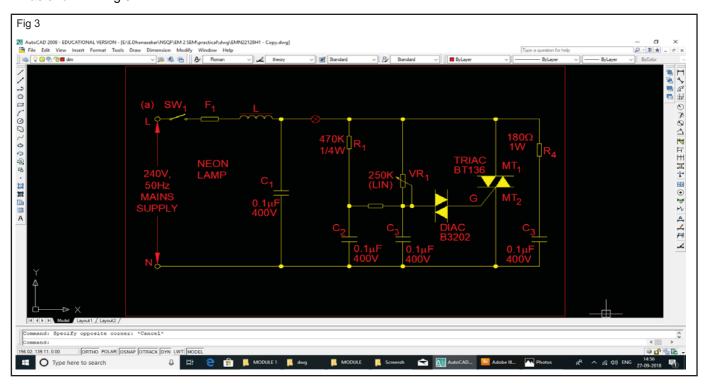
- 9 Make the connections by referring to the circuit diagram in Fig 1; Keep the cursor on the x mark on the component and drag the mouse wherever it need to be connected.
- 10 Go to menu bar & click T&M, select CRO as shown in Fig 5, click on it to use CRO.
- 11 Get the work checked by the Instructor.


TASK 2: Construction of electronic lamp dimmer circuit using simulation software

Note:


This exercise /Task has been developed using proteus - ISIS free simulation software.

The Instructor has to guide the trainees to follow each and every critical steps to select the components their values and placement / position, printing their numbers etc to complete the task as per the simulation software available in the lab.


1 Select the circuit for construction of electronic dimmer circuit as shown in Fig 1.

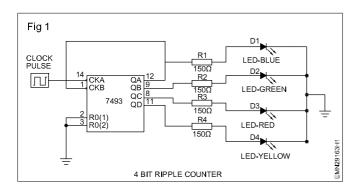
- 2 Switch ON the computer, double click the simulator icon on the desktop.
- 3 Open a new project the schematic and go to the schematic capture option.
- 4 Click and select all the parts required from resistors, capacitor to diac and triac into the library as shown in Fig 2.
- 5 Move the cursor, select the triac, left click drag and place it on the user area place and position it on the user area.
- 6 Similarly select and place all the components, voltage source etc as per the diagram of the dimmer circuit.
- 7 Click the cursor to wire the connection on the component tip a red square dot appears move the cursor click again complete the wiring.

8 Close the switch S1 and observe the bulb is ON and adjust the a rheostat VR1 the brightness is reduced as shown in Fig 3.

9 Get the work checked by the Instructor.

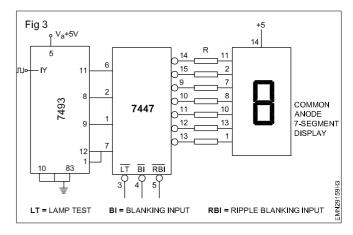
Construct and test a four bit asynchronous binary counter using IC 7493

Objective: At the end of this exercise you shall be able to


· construct and test trace bit asynchronous binary counter using IC 7493. (4 bit ripple counter).

Requirements					
Tools/Equipments/Instruments		Materials/Components			
 Digital multimeter with test probes DC power supply, 0-30V/2A Function Generator Dual trace CRO 0-20 MHz 	- 1 No - 1 No - 1 No - 1 No	 Breadboard 74LS47 (BCD-to-7 segment decoder chip) IC 74LS93 (Asynchronous binary counter) LED 5mm, Red Resistor 330Ω/¼ W/CR25 Connecting Hook up wire 7 Segment display (CA) 	- 1 No - 1 No - 1 No - 4 Nos - 4 Nos - as reqd - 1 No		

PROCEDURE


TASK 1: Construction and testing of asynchronous binary counter using IC7493 (4 bit ripple counter)

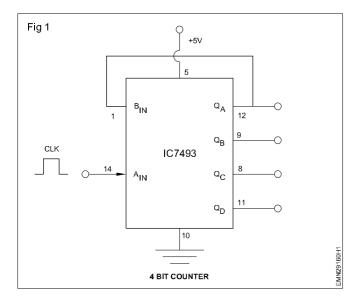
1 Assemble the 4-bit ripple counter shown in Fig 1. Internal diagram of IC 7493 shown in Fig 2.

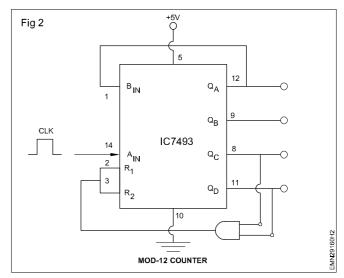
- 2 Operate the pulser to verify that the count goes from zero (0000) to fifteen (1111).
- 3 Connect the Clock pulse at Pin No. 14 of IC and use a dual trace oscilloscope to observe the waveforms at the clock and the counter outputs.
- 4 Alternately connect seven segment driver IC 7447 to display on seven segment LED as shown in Fig 3.
- 5 Get the work checked by the Instructor.

Electronics & Hardware Electronic Mechanic- Counter & Shift Registers

Construct and test 7493 as a modulus - 12 counter

Objectives: At the end of this exercise you shall be able to


• construct and test modulus 12 counter using TTL IC-7493.


Requirements **Tools/Equipments/Instruments Materials/Components** Trainees tool kit - 1 Set Breadboard - 1 No IC 7493 DC power supply 0-30V/2A - 1 No - 1 No DMM with probes - 1 No LED 5mm, Red - 5 Nos Clock pulse generator - 1 No Resistor 330Ω/¼ W/CR25 - 5 Nos Dual trace CRO-20 MHz Connecting wire (hook - up) - 1 No - as regd IC 7447 & 7 segment display - 1 Set

The 7493 is a four-bit ripple type binary counter. It consists of four flip-flops which are connected as shown in Figure below. In order to function as a four-bit counter, CP1 must be externally connected to QA. If both the master reset pins MR1 and MR2 are raised high, the four-bit flip-flops are reset to zero.

PROCEDURE

- 1 Connect the modulus 12 counter using 7493 on bread board referring to circuit shown in Fig 1 & 2.
- 2 Connect Q_c & Q_D (pins 8 & 11) to MR₁ & MR₂ (pins 2 & 3) respectively.
- 3 Get the assembled circuit checked by the instructor
- 4 Switch on +5V regulated DC power supply.
- 5 Press CLEAR-A & CLEAR-B push buttons switch once, to clear the outputs of all flip flops.

- 6 Record the Q-outputs (Q_A to Q_D) of all the 4-flip flops based on the LEDs status.
- 7 Apply one clock pulse at the input (first PIN of IC-7493 i.e Cp₁) using the single shot pulser.
- 8 Record the output logic levels and the status of LEDs A,B,C,D in Table 1.
- 9 Repeat the steps with 7-segment driver IC 7447 & 7seg display as shown in Fig 3 of Ex 2.9.159.

Table 1

Input	Four bit mod-12 counter					
Count	QD	QC	QB	QA		
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						

10 Get the recorded reading checked by the Instructor.

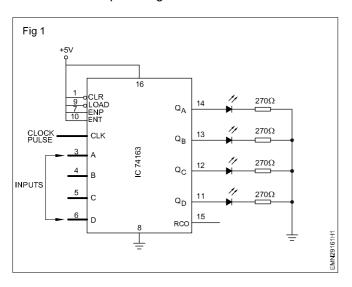
Electronic Mechanic- Counter & Shift Registers

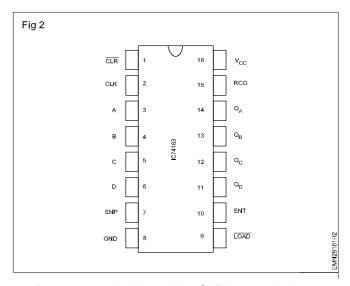
Construct and test a four bit synchronous binary counter using IC 74163

Objectives: At the end of this exercise you shall be able to

construct and test synchronous binary counter using IC 74163.

Requirements			
Tools/Equipments/Instruments		Materials/Components	
 Mulitmeter with probes DC power supply, 0-30V/2A Clock pulse generator 1 Hz Dual trace CRO, 0-20 MHz 	- 1 No - 1 No - 1 No - 1 No	 Breadboard I.C74LS47 (BCD-to-7 segment decoder chip) IC 74LS163 (synchronous binary counter) IC 7404 LED 5mm, Red Resistor 270Ω/¼ W/CR25 Lengths of jumper wire/connecting wire (hook-up) 	- 1 No - 1 No - 1 No - 1 No - 4 Nos - 4 Nos - as reqd


Inside the IC74163


There are two separate enable inputs, ENT and ENP, setting either of these inputs to logic 0 stops counting asynchronously. Ripple Carry Output (RCO) is normally at logic 0 and goes to logic 1 when counter reaches its highest count i.e., '1111'. It is used in cascading multiple 74163 ICs. Load is an active, low input which allows the count on 'ABCD' to reflect on ' $Q_{_A}Q_{_D}Q_{_D}$ ' at active clock edges. CLR is also an active low input which clears counter as asynchronously to '0000'.

PROCEDURE

TASK 1: Construction and testing of synchronous binary counter

- 1 Collect all the components, check them and assemble the circuit on the breadboard as shown in Fig 1. The Pin details of IC 74163 is shown in Fig 2.
- 2 Get the assembled circuit checked by the Instructor.
- 3 Apply clock pulses using pulse Generator and observe the counter outputs in LEDs and noted in Table 1.
- 4 Make CLR input to logic-0 and reset the counter.

- 5 Repeat counting by making CLR input to logic 1.
- 6 Use IC 74LS47 and 7 segment LED as shown in previous exercise 2.9.159 to obtain & view a decimal counted value on display.
- 7 Record the readings in Table 1.

Table 1

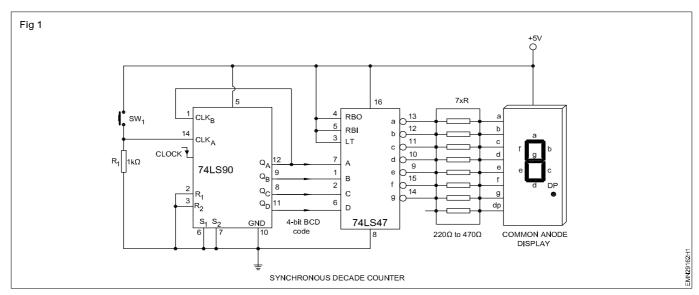
S.No.	Pulse count	$Q_{_{D}}$	Q_{c}	$Q_{_{\mathrm{B}}}$	Q _A	7-Seg display reading

8	Get the work checked by the Instructor.	

Electronics & Hardware Electronic Mechanic- Counter & Shift Registers

Construct and test synchronous Decade counter

Objectives: At the end of this exercise you shall be able to


· construct and test synchronous decade counter.

Requirements Tools/Equipments/Instruments **Materials/Components** Trainees tool kit - 1 Set IC74LS90 (Decade counter) - 1 No DC power supply, 0-30V/2A - 1 No IC 7447 (7-seg driver) - 1 No Logic with probes - 1 No 7-seg display - 1 No Resistor 330Ω/¼ W/CR25 -8 Nos LED Red, Green - 4 Nos

- Assemble a ripple binary counter on a breadboard referring to the circuit shown in Fig 1.
- 2 Get the assembled circuit checked by the instructor.
- 3 Switch on +5V regulated DC power supply. Press CLEAR push button switch once, to clear the outputs. Observe the Q-outputs (Q_0 to Q_3) based on the LEDs status (ON/OFF) in Table 1 of record sheet.
- 4 Apply one clock pulse at the input at pin 14 and record the output logic levels. Observe outputs of IC 7490 using logic probe.
- 5 Repeat step 4 and verify the output logic levels for successive clock pulse input and observe the status of output QA, QB, QC and QD after giving each clock pulse at the input as shown in Table 1.
- 6 Repeat step 3 to clear the output of all flip-flops.
- 7 Use IC 74LS47 and 7-seg display to observe the count value in decimal.
- 8 Get the work checked by the Instructor and observe counter output on 7 seg display.

					_
Clock Pulse	QD	QC	QB	QA	
0	0	0	0	0	1
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	1 /
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1]

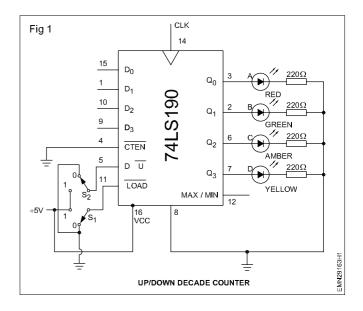
Table 1

Construct and test an UP/DOWN synchronous decade counter using 74190 and monitor the output on LEDs

Objectives: At the end of this exercise you shall be able to

- construct an up/down counter using IC 74LS190
- · test the counter for counting UP and counting DOWN.

Requirements			
Tools/Equipments/Instruments		Materials/Components	
 Trainees tool kit Regulated power supply 0-30V/2A Logic probe Single shot pulser 	- 1 Set - 1 No - 1 No - 1 No	 Breadboard IC74LS190 (Up/down decade counter) LED 5mm (Red, Green, Amber, Yellow) Resistors 220Ω, ¼ W/CR25 Switches SPDT Connecting wires/ Hook up wires 	- 1 No - 1 No - 1 No each - 4 Nos - 2 Nos - as reqd


PROCEDURE

TASK 1: Construction of synchronous UP/DOWN decade counter using 74 LS190

- 1 Collect all the components, check them and assemble the circuit of a up/down decade counter on a breadboard using IC74LS190 as shown in Fig 1.
- 2 Get the assembled circuit checked by the instructor.

Note:

- Up/Down decade counter counts from 0 to 9 and then recycles to '0' again.
- Pin-5 determines the direction of count when this input is high the counter counts down, when it is low, the counter counts up.
- MAX/MIN The output at this pins counts high when the counter is reached at NINE (1001).

TASK 2: Setting the decade counter to count-up mode and test

- 1 Switch ON the supply and apply +5V regulated DC supply to the circuit.
- 2 Apply logic-0 to the control pin D/ to make the counter count-up through a toggle switch.
- 3 Apply logic 0 to the pins D₀ to D₃. Apply logic-0 to the control pin logic momentarily and raise it back to Logic-1 state with a toggle switch.

This sets output Q_3 , Q_2 , Q_1 , Q_0 to logic-0 levels.

- 4 Refer Table 1 of record sheet and feed clock pulses at clock input (pin 14) using single shot pulser. Record the status of LED(s) at outputs Q₃, Q₂, Q₁ and Q₀.
- 5 Record the logic levels at Q₃, Q₂, Q₁, and Q₀ using the logic probe in Table 1.
- 6 From the recorded readings at steps 4 and 5 conclude whether the counter is counting-up or down.
- 7 Get the recorded output and your conclusion checked by the Instructor.

8 Repeat steps 3, 4, 5 and 6 to recheck satisfactory working of the counter.

Table 1 Up counter

D/Ū	Clock	LOAD	S	tatus o	f LED	5
Pin No.5	input Pin No.14	Pin No.11	D _o	D ₁	D ₂	D ₃
0	Х		0	0	0	0
0	\uparrow	1	х	х	х	х
0	\uparrow	1	х	х	х	х
0	\uparrow	1	х	х	х	х
0	\uparrow	1	х	х	х	х
0	\uparrow	1	х	х	x	х
0	\uparrow	1	х	х	x	х
0	\uparrow	1	х	х	х	х
0	↑	1	х	х	х	х
0	\uparrow	1	x	x	x	х

Conclusion:		
COLIGIOSIOLE		

9 Get the work checked by the Instructor.

TASK 3: Setting the decade counter to count-down mode and test

- 1 Feed D₃, D₂, D₁ and D₀ with 1001 (binary 9) by applying suitable voltage levels (logic-1=+5V and logic-0=0V).
- 2 Apply logic-0 to OAD input (pin-11) momentarily and raise it back to logic-1 level.

This sets the outputs Q_3 , Q_2 , Q_1 and Q_0 to 1001 such that this becomes the starting value for the down counter.

3 Apply logic-1 to D/U (Down/Up, pin 5) such that the counter is prepared for count-down operation.

- 4 Refer Table 2 and feed clock pulses at clock input (Pin 14). On feeding each clock pulse record the output Q_3 , Q_2 , Q_1 and Q_0 .
- 5 From the recorded readings at step 4, conclude whether the counter is counting-up or counting-down.
- 6 Repeat steps 1 to 5 to recheck satisfactory working of the down-counter.
- 7 Get the working of the circuit and the recorded output checked by the Instructor.

Table 2-Down Counter

D/Ū	Clock	COAD	St	atus of	LED(S)
Pin No.5	input Pin No.14	Pin No.11	D _o	D ₁	D ₂	D ₃
X	Х		1	0	0	1
1	↑	1				
1	1	1				
1	<u> </u>	1				
1	↑	1				
1	↑	1				
1	↑	1				
1	↑	1				
1	1	1				

Conclusion:

Exercise 2.9.164

Electronic Mechanic- Counter & Shift Registers

Identify and test common anode and common cathode seven segment LED display using multimeter

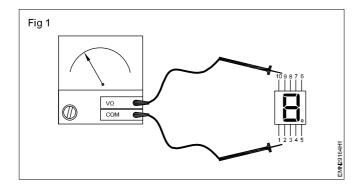
Objectives: At the end of this exercise you shall be able to

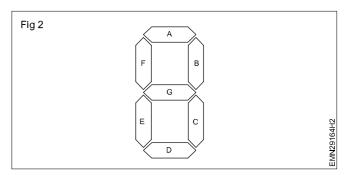
· test the common anode and common cathode by using multimeter.

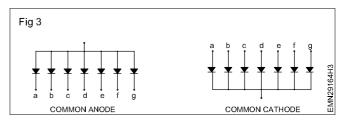
Requirements

Tools/Equipments/Instruments

- Multimeter with probes
- 1 No


Materials/Components


- Seven segment LED (common anode)
- Seven segment LED (comon cathede)
- 1 No
- 1 No


PROCEDURE

TASK 1: Testing the seven segment - LED display and identify the type

- 1 Collect the components from Instructor. Check the 7-seg display units by using multimeter.
- 2 Identify the given display whether it is common anode (or) common cathode using data book.
- 3 Check each segment using multimeter in diode mode as shown in Fig 1. (Each segment is an LED inside when forward biased LED slows when reverse biased LED does no glow). Refer to Fig 3 to know the common terminal.

- 4 Multimeter +ve terminal is connected to common pin and -ve tenimal is connected to all pins.
- 5 7 Segment pins are 10 numbers and 2 pins are common. 1 pin is dot (Details of Pin).
- 6 Repeat the checking procedure for the other type of display.
- 7 Get the work checked by the Instructor.

Electronics & Hardware Electronic Mechanic- Counter & Shift Registers

Display the two digit count value on seven segment display using decoder/driver ICs

Objectives: At the end of this exercise you shall be able to

- construct and test a decade counter using IC No.7490 with a BCD to seven segment decoder/driver and 7segment display
- construct a 2 digit counter & display count value.

Requirements			
Tools/Equipments/Instruments Trainees tool kit DC power supply, 0-30V/2A Logic probe Materials/Components IC-7490 IC-7447	- 1 Set - 1 No - 1 No - 2 Nos - 2 Nos	 IC base 14 pin IC base 16 pin 7-segment LED display FND507 Resistors 330Ω/¼W/CR25 Logic probe Single shot logic pulser General purpose IC TB/Bread board Solder, flux Connecting wires 	- 2 Nos - 2 Nos - 2 Nos - 7 Nos - 1 No - 1 No - 1 No - as reqd - as reqd

PROCEDURE

TASK 1: Construction and testing of a decade counter using IC7490

1 Collect all the components, check them and assemble the decade counter using IC 7490 on the bread board as shown in Fig 1.

Make use of IC base to connect IC7490

- 2 Reset the counter output by applying logical 1 input momentarily to reset input pins 2 & 3.
- 3 Test and record the output logic levels in Table 1 using logic probe.
- 4 Apply a clock pulse at Pin no.14 using single shot logic pulser and note down the output logic levels in Table 1 at QA, QB, QC & QD using logic probe.
- 5 Repeat step 4 for different clock pulses and record the observations in the table.

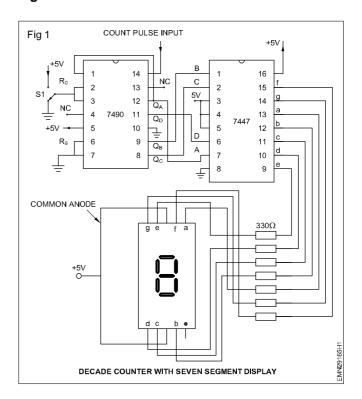


Table 1 Testing of decade counter IC7490

Clock		Out	put		Decimal number displayed
input	$Q_{_{\mathrm{D}}}$	Q_c	$Q_{_{\mathrm{B}}}$	Q_A	
0 (reset)					
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

6 (Get the	work	checked	by the	Instructor.
-----	---------	------	---------	--------	-------------

TASK 2: Construction and testing of decoder/driver with seven segment display for two digit count value

- 1 Assemble the circuit shown in Fig 2 with decoder/driver 7-segment display refer Fig 1 and construct the remaining part of the circuit using decoder/driver IC7447 on the same bread board used in the previous task.
- 2 Connect the seven segment display module to the decoder/driver by referring to Fig 1.
- 3 Get the assembled circuit checked by the instructor.
- 4 Reset the counter output by applying logical 1 input momentarily to reset input pins 2 & 3 and record the 7-segment output of 7447 and the number displayed on seven segment display in Table 2.
- 5 Apply a clock pulse at Pin no.14 using single shot logic pulser and note down the number displayed on seven segment display in Table 2.
- 6 Repeat step 5 for different clock pulses and record the observations.

Compare and relate the output levels of IC7490 and the corresponding displayed values on the seven segment display for each of the clock pulse applied at Pin no.14.

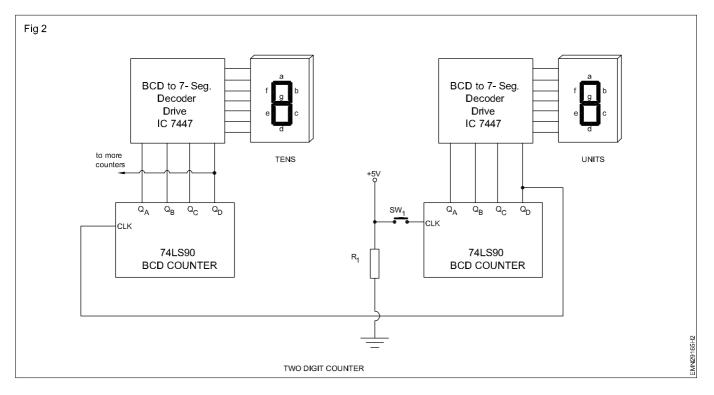


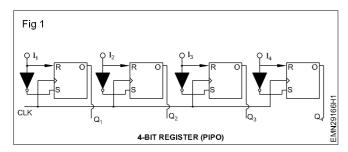
Table 2

Clock		Output	of 7490		7-segment			Outpu	ıt of 74	47		
input	$Q_{_{\mathrm{D}}}$	Q _c	$Q_{_{\mathrm{B}}}$	Q _A	display reading	а	b	С	d	е	f	g
Reset												
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												

7 Get the work checked by the Instructor.

Construct a shift register using RS/D/JK Flip- Flop and verify the result

Objectives: At the end of this exercise you shall be able to


- · construct a shift register RS flip-flop
- · construct a shift register D flip-flop
- construct a shift register JK flip-flop.

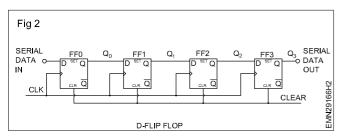
Requirements											
Tools/Equipments/Instruments		Materials/Components									
 Trainees tool kit DC power supply, 0-30V/2A Data sheet of the IC used Digital multimeter with probes 	- 1 Set - 1 No - as reqd - 1 No	 Hook up wire/connecting wires Bread board IC 74279, IC 74379 Miniature toggle switch SPDT LED 5mm, Red Resistor 330Ω/1/4W/CR25 IC 7476 	 - as reqd - 1 No - 1 No each - 2 Nos - 4 Nos - 4 Nos - 4 Nos 								

PROCEDURE

TASK 1: Construction of a shift registers using RS Flip-Flop IC 74279

1 Collect the components check them and assemble the circuit of a shift register on a breadboard as shown in Fig 1.

- 2 Get the assembled circuit checked by the Instructor.
- 3 Apply logic o to clear input (cr), measue and record the output logic level in Table 1.
- 4 Apply logic-1 to clear input (cr). Apply data input of the FF. Input set I_4 , I_2 , I_3 and I_4 at
- 5 Give one clock pulse at the clock input. Record the output logic level in the Table 1.
- 6 Apply logic 0 to serial input. Repeat steps 5.
- 7 Apply logic 1 to serial input and Repeat step 5.


Table 1

Clock	Clear Input	Serial Input	Parallel O/P						
CIOCK	Clear Input	Senai input	Q ₄ MSB	Q_3	Q_2	Q ₁ LSB			
X	0	x							
\	1	1							
\	1	0							
\	1	0							
↓ ↓	1	1							

8 Get the record verified by the Instructor.

TASK 2: Construct a Shift registers using D flip-flop IC 74379

1 Refer Fig 2 and assemble the circuit of a shift register on a bread board using IC 74379.

- 2 Get the assembled circuit checked by the Instructor.
- 3 Apply logic-0 to clear input (cr) measure and record the output logic levels in Table 2.
- 4 Give one clock pulse at the clock input. Record the out logic level in the Table 2.

Table 2

CLOCK PULSE	Q3	Q2	Q1	Q0		
0	0	0	0	0		
1	0	0	0	1		
2	0	0	1	1		
3	0	1	1	1		
4	1	1	1	1		
5	1	1	1	0		
6	1	1	0	0		
7	1	0	0	0		
					•	

- 5 Apply logic 0 to serial input. Repeat step 4.
- 6 Apply logic 1 to serial input and Repeat step 4 and similarly apply the serial data (1111)₂
- 7 Get the recorded readings verified by the Instructor.

TASK 3: Construction of a shift register using JK-Flip-Flop IC-7476

- 1 Refer Fig 3 and wire the circuit of a shift register on a circuit bread board using IC-7476.
- 2 Get the assembled circuit checked by the Instructor.
- 3 Apply logic-0 to clear input(C).Measure and record the output logic levels $\rm Q_A, \, Q_B, \, Q_C$ and $\rm Q_D$ in Table 3.
- 4 Apply logic-1 to Clear input (Cr), Apply serial/data input to the circuit.
- 5 Give one clock pulse at the clock input. Record the output logic levels in the Table 3.
- 6 Apply logic-0 to serial input. Repeat step 5 and give the second and third clock pulses.
- 7 Apply (1001)₂ as serial input to SIPO register in steps of one bit at time and repeat step-5.

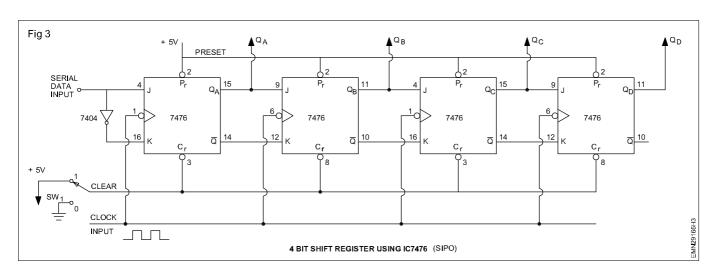


Table 3
4 BIT SHIFT REGISTER USING IC7476
4-bit shift left register using 7476 JK-Flip-Flop

Clock	Clear Input	Social Input	Parallel O/P						
CIOCK	Clear Input	Serial Input	Q _D MSB	Q _c	$Q_{_{\rm B}}$	Q _A LSB			
X	0	х							
\	1	1							
\	1	0							
\	1	0							
\	1	1							

8 Get the recorded readings verified by the Instructor.

Electronics & Hardware Electronic Mechanic- Counter & Shift Registers

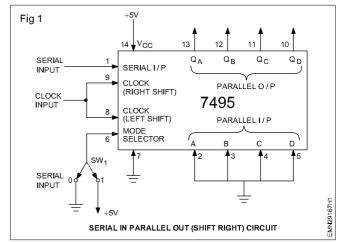
Construct a test four bit SIPO register

Objectives: At the end of this exercise you shall be able to

construct and test 4 bit SIPO register using IC 7495.

Requirements							
Tools/Equipments/Instruments		Materials/Components					
 Multimeter with probes DC power supply, 0-30VDC/2A Logic probe Single Shot Pulser Trainees tool kit 	- 1 No - 1 No - 1 No - 1 No - 1 Set	 Breadboard IC 7495 miniature toggle Switch SPDT Solder Flux Hookup wires LED 5mm, Red Resistors 330Ω/¼ W/CR25 	- 1 No - 1 No - 1 No - as reqd - as reqd - 4 Nos - 4 Nos				

PROCEDURE


TASK 1: Construction and testing of 4 bit serial in, parallel out (shift right)

- 1 Collect all the components, check them and assemble the circuit to a serial in, parallel out (SIPO) (shift right) shift register as shown in Fig 1.
- 2 Get the assembled circuit checked by the Instructor.
- 3 Power 'ON' circuit. Apply logic-1 to mode control input and also apply a clock pulse to clock input and record the parallel output logic levels \mathbf{Q}_{A} , \mathbf{Q}_{B} , \mathbf{Q}_{C} and \mathbf{Q}_{D} (should be 0000).

With mode control input at logic '1', parallel inputs A=B=C=D=0, results in $\bf Q_A \, \bf Q_B \, \bf Q_C$ and $\bf Q_D$ equal to 0000.

During shift right, parallel inputs are in don't care condition i.e not necessary to be kept in 0.

4 Apply logic-o to mode control. Apply clock pulse to clock input and serial inputs to circuit as in Table 1. Record the corresponding outpur logic levels.

- 5 Get the working of the circuit and recorded readings checked by the Instructor.
- 6 Switch OFF the DC supply.

Table 1
Serial in, parallel out (Shift right)

Mode control	Clock Input	Parallel Input				Parallel Output				
		$Q_A Q_B Q_C Q_D$			$Q_{_{\!A}}$	$Q_{_{\rm B}}$	Q_c	Q _D		
1	\	0 0 0 0			0	0	0	0		
		Serial Input								
0	\downarrow	1								
0	\downarrow		1							
0	\	1								
0	\	1								

Electronics & Hardware Electronic Mechanic- Counter & Shift Registers

Construct and test four bit PIPO register

Objectives: At the end of this exercise you shall be able to

•	construct and test a	4 bit shift register	using IC 7495.

Requirements											
Tools/Equipments/Instruments		Materials/Components									
 Trainees tool kit DC power supply, 0-30V/2A Logic probe Single Shot Pulser 	- 1 Set - 1 No - 1 No - 1 No	 Breadboard IC 7495 (4 bit shift register) Miniature toggle switch SPDT Connecting wires/Hook up wires LED 5mm, Red Resistor 330Ω/¼ W/CR25 	- 1 No - 1 No - 5 Nos - as reqd - 4 Nos - 1 Nos								

PROCEDURE

TASK 1: Construction and testing of a 4-bit shift register using IC-7495 (PIPO)

- Collect the components, check them and assemble the circuit of a 4 bit shift register on a bread board using IC-7495 as shown in Fig 1.
- 2 Get the assembled circuit checked by the Instructor.
- 3 Switch ON main supply and connect RPS. Apply +5V DC to IC-7495.
- 4 Apply logic-1 to mode control input through switch SW₁.
- 5 Apply 1011 as a parallel input data through switches SW₂ SW₃, SW₄ and SW₅. Give clock pulse to clock input by using single shot pulser. Record the output logic levels Q_{Δ}, Q_{R}, Q_{C} and Q_{D} in Table 1.
- 6 Repeat step 4 and 5 for different parallel inputs and record corresponding output logic levels in Table 1.
- 7 Get the working of the circuit & recorded readings checked by the Instructor.
- 8 Switch-off the DC supply to the circuit.

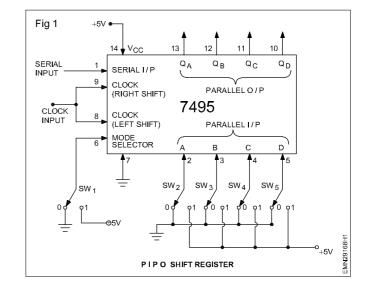


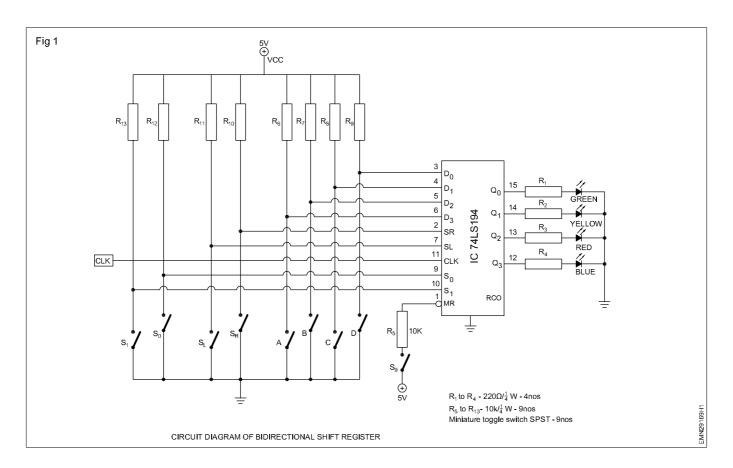
Table 1 4-bit shift register using IC-7495

Mode control	Clock Input		Paralle	el Input		Parallel Output				
	Clock Input	D	С	В	А	$Q_{_{D}}$	Q_c	$Q_{_{\rm B}}$	Q _A	
1	↓	1	0	0	1					
1	↓	1	0	1	1					
1	\	1	1	0	1					
1	↓	1	1	1	1					

Electronics & Hardware Electronic Mechanic- Counter & Shift Registers

Construct and test bidirectional shift register

Objectives: At the end of this exercise you shall be able to


• construct and test bidirectional shift register using IC 74194.

Requirements							
Tools/Equipments/Instruments		Materials/Components					
 Trainees tool kit Digital mulitmeter with probes Regulated DC power supply, 0-30VDC/2A Clock pulse generator 1 Hz CRO Dual trace 20 MHz Data sheet of the IC 	- 1 Set - 1 No - 1 No - 1 No - 1 No - as reqd	 Miniature toggle switch SPST Breadboard I.C 74LS194(bidirectional shift register) LED 5mm, Red Resistor 330Ω/¼ W/CR25 Connecting Hook up wires 	- 9 Nos - 1 No - 1 No - 4 Nos - 4 Nos - as reqd				

PROCEDURE

TASK 1: Construction and testing of bidirectional shift register using IC74LS194

- 1 Collect all the components required, test them, refer to the pin out diagram on the data sheet of the IC, assemble the bidirectional shift register circuit as shown in Fig 1 on broad board.
- Use toggle switches for data input pins for A, B, C and D, and also for S₁, S₀, Data Shift Left (DSL), Data Shift Right (DSR) and for Master Reset/Clear pins as shown in Fig 1.

- 3 Get the assembled circuit checked by the Instructor.
- 4 Switch ON 5VDC supply and operate all the switches as per the Truth tables given below for different logic levels either in 5V position or in zero volt (GND) position as shown in the Tables.
- 5 Observe the status of all the LEDs for each step of combinations, record them in the respective tables given.
- 6 Set the switches as per the Truth Table 1 and observe the LEDs and record in Table 1

Truth Table 1

MR	S ₁	S ₀	DSR	DSL	CP	D ₀	D ₁	D ₂	D ₃	$Q_{_{0}}$	Q ₁	Q ₂	Q_3
0	х	х	х	х	х	х	х	х	х	х	х	х	х

7 Repeat the steps parallel data loading operation as shown in truth table -2 below and verify the output with clock pulse.

Truth Table 2

MR	S ₁	S ₀	DSR	DSL	CP	D ₀	D ₁	D ₂	D ₃	Q _o	Q ₁	Q_2	Q_3
1	1	1	х	х	CLK	1	1	1	1	1	1	1	1

8 Switch DSL input to logic '1' as shown in truth table -3 and observe the shifting of logic '1' to the LEFT, truth table 3.

Truth Table 3

n clock pulses	Q_0	Q_1	Q_2	Q_3
0	0	0	0	0
1	0	0	0	1
2	0	0	1	1
3	0	1	1	1
4	1	1	1	1

9 Observe the output with each clock pulse and verify. Change the logic inout to DSL as logic '0' follow the condition MR=1, S₀=0, S₁=1, DSL=0, DSR=X, observe the outputs as shown in truth table -4 for each clock pulse and verify the shift left logic '0'.

Truth Table 4

n clock pulses	$Q_{_{\scriptscriptstyle 0}}$	Q_1	Q_2	Q_3
0	1	1	1	1
1	1	1	1	0
2	1	1	0	0
3	1	0	0	0
4	0	0	0	0

10 Switch DSR input to logic '1'as shown in truth table -5, follow the condition MR=1, S_0 =1, S_1 =0, DSL=X, DSR=1, observe the outputs for each clock pulse and verify the shift right logic '1'.

Truth Table 5

n clock pulses	Q_0	Q_1	Q_2	$Q_{_3}$
0	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1

11 Change the input to DSR as logic '0' and follow the condition MR=1, S₀=1, S₁=0, DSL=X, DSR=0, as per the truth table -6; observe the outputs for each clock pulse and verify the shift right of logic '0'.

Truth Table 6

n clock pulses	$Q_{_{0}}$	$Q_{_1}$	Q_2	Q_3
0	1	1	1	1
1	0	1	1	1
2	0	0	1	1
3	0	0	0	1
4	0	0	0	0

- 12 Switch S_0 & S_1 to logic '0' follow the condition MR=1,DSL=0, DSR=0, S_0 =X, S_1 =X, observe the outputs formeach clock pulse as per the truth table -7 for HOLD operation, and verify the output truth table 7.
- 13 Get the work checked by the instructor.

Truth Table 7

n clock pulses	$Q_{_{0}}$	Q ₁	$Q_{_{2}}$	Q_3			
0							
1	Previous data just before $S_0 \& S_1$ both switched to logic '0'						
2							
3							
4							

Exercise 2.10.170

Electronic Mechanic- Op-Amp & Timer 555 Applications

Use analog IC tester to test various analog ICs

Objectives: At the end of this exercise you shall be able to

- identify various analog ICs with their specifications
- · test the anolog ICs using anolog IC tester.

Requirements

Tools/Equipments/Instruments

- Analog/IC Tester with operating manual
- Semiconductor Data book/manual

Materials/Components

- Assorted analog ICs such as Op-Amp and timer ICs (IC 74, LM 324 IC 555)
- Minimum 3 Nos each

Keep a minimum of 10 nos of assorted labeled ICs on a table at two places and instruct the trainees to pick one IC at a time to carry out the testing work.

Instructor should demonstrate the operation of IC tester available in the laboratary. A typical IC tester is shown in Fig 1.

PROCEDURE

TASK 1: Identification of various Analog ICs with their specifications and pin diagram

- 1 No

- as reqd

- 1 Pick one of the labeled IC from the assorted lot and record its product code /label number printed on the body.
- 2 Refer to the data sheet semiconductor international data book for Op-Amp / Timer (which ever applicable) and record the following specifications of the given IC;
 - Type of package
 - Manufacturers name
 - Number of OP-Amps/timers in the IC
 - Rated maximum DC supply voltage
 - Open-loop gain A_{VOL}

- Minimum output current I_{out(min)}
- Slew rate of the IC
- Any other parameter applicable to this IC
- Typical applications.
- 3 Count the number of pins in the given IC. Make a rough sketch of the IC. Identify and record the pin numbers.
- 4 Repeat the steps for atleast four different ICs having different product code.

Table 1

SI.No.	Label No.	IC Number	Manufacturer name	V _{cc} max	A _{VOL}	I _{оит} (min)	Application	Pin diagram

5 Get the work checked by the Instructor.

IC Tester has self test button. On pressing it, The IC tester performs self Diagnostic test its own hardware. It has two modes of operations

- 1 Quick test To test and give result immediately.
- 2 Stepwise test To know which portion of hardware in IC has failed. In this method, even if one AMP in a dual Op-Amp IC is GOOD that IC can be used.
- 1 Refer to the instruction operation manual of IC tester, familiar with operation of analog/universal IC tester available in laboratory.

Use operator manual note down the library of analog ICs of the tester to know which ICs may be tested with the tester as shown in Fig 1.

- 2 Pick one of the labelled IC, identify the pin no. 1, orient it/as per the ZIF socket position.
- 3 Open the level of the ZIF socket and insert the IC into position carefully.

Note: ZIF socket refers to Zero Insertion Force.It is a type of socket for mounting electronic devices that is designed not to stress ordamage them during Insertion.

4 Switch on the power switch of IC tester enter the IC number on the keypad of the IC tester and press TEST key and see the result.

Note: The IC tester comprises of programs /set of testing procedure to test every analog IC available in its library. it checks the procedures of various steps and produces the result as GOOD or BAD on the display provided in it.

- 5 Find out whether the given IC is GOOD (or) BAD by observing the display of the IC tester and record the result in Table 2.
- 6 Repeat the exercise for at least 3 Op-Amps and 3 Timer IC to show the difference between good and defective and record in Table 2.

Table 2

SI.No.	IC No. test	Mode	Condition of IC

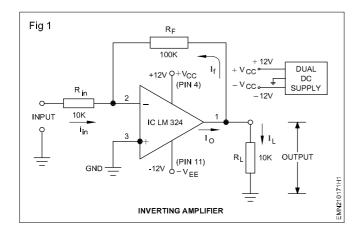
7 Get the work checked by the Instructor.

Exercise 2.10.171

Electronic Mechanic- Op-Amp & Timer 555 Applications

Construct and test various Op-Amp circuits Inverting, Non-inverting, Summing Amplifiers

Objectives: At the end of this exercise you shall be able to


- construct and test Inverting amplifier using LM 324
- construct and test Non-Inverting amplifier using LM 324
- · construct and test summing amplifier and differential amplifier using LM 324.

Tools/Equipments/Instruments		Materials/Components		
 Analog/Universal IC Tester with instruction manual CRO, 20 MHz Dual trace Semiconductor Data book Analog/Digital multimeter with probes Dual regulated DC power supply 0-30V/2A Function generator Trainees tool kit 	- 1 No - 2 Nos - 1 No - 1 No - 1 No - 1 No - 1 Set	 Op-Amp ICs LM324, UA741 Breadboard Resistors 10 kΩ,½ W/CR25 100 kΩ,½ W/CR25 Hook up wires/connecting wires IC base (8 pin), DIP Diodes 1N4001 	- 2 Nos each - 2 Nos each - 7 Nos - 1 No - as reqd - 2 Nos - 4 Nos	

PROCEDURE

TASK 1: Construction and testing of an inverting amplifier

- 1 Collect all the required components from the instructor and check them with multimeter; use IC tester for checking ICs.
- 2 Identify the type of package and pins of the given Op-Amp using Data book.
- 3 Refer to circuit diagram shown in Fig 1 and assemble the inverting amplifier circuit on bread board.
- 4 Get the assembled circuit checked by the Instructor.

Always keep an IC base fixed on the breadboard for inserting the Op-Amp IC.

- 5 Connect +12V, -12V and GND of dual DC power supply to pin 4, pin 11 and GND respectively.
- 6 Prepare the CRO for measurements and apply $0.2V_{p-p}$ at the input.
- 7 Meaure the output using DMM and CRO.
- 8 Vary the input voltage and observe the output variations using multimeter and oscilloscope; record the observation in Table 1.
- 9 Change the value of feedback resistor $R_{\scriptscriptstyle F}$ and $R_{\scriptscriptstyle in}$ observe the variation in gain and record them in Table.
- 8 Get the completed work checked by the Instructor.

TASK 2: Construction and testing of a non-inverting amplifier using IC LM324

- 1 Refer to the circuit diagram shown in Fig 2 and modify the assemblled circuit on Bread board.
- 2 Get the assembled circuit checked by the Instructor.
- 3 Repeat steps 5 to 8 of Task 1 and record the observations.
- 4 Repeat the steps 9, record the observations and calculate the gain and record them.

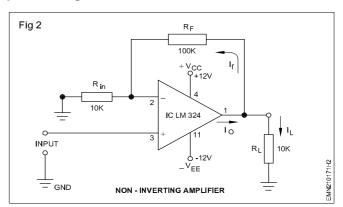


Table 1

S.No.	Input voltage applied (V _i)	Outputvoltage		Gain normal observed values V_{out} / V_{in}		Gain x Vin= Volt Calculate values	
		Inverting amplifier	Non inverting amplifier	Inverting amplifier	Non inverting amplifier	Inverting amplifer (R _f /R _{in}) x Vin	Non inverting (1+(R _r /R ₁)xVin
1	0.2V						
2	0.4V						
3	0.6V						

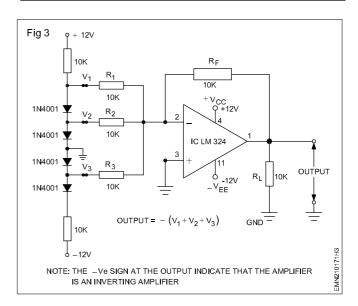
5 Get the work checked by the Instructor.

TASK 3: Construction and testing of a summing amplifier using IC LM324

Carry out the experiment on a Bread board. The suitable values for input voltage are kept such that.

$$\frac{R_F}{R_1} = \frac{R_F}{R_2} = \frac{R_F}{R_3} = \frac{R_f}{R_{in}}$$

1 Collect all the required items, check the components and assemble the circuit according to the amplifier circuit shown in Fig 3.


Note the inputs have been applied to inverting terminal.

- 2 Get the assembled circuit checked by the instructor.
- 3 Switch ON the dual DC power supply measure the output using multimeter and CRO.

Use the given formula to calculate the output voltage for summing amplifier.

4 Verify the results obtained & compare with the calculated values.

To apply inputs to noninverting terminal exchange the inputs applied on inverting and non inverting terminals.

Observation table

Table 2

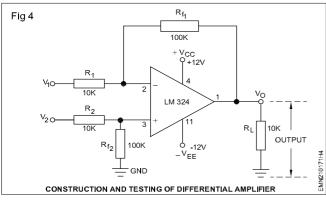
S.No.	Configuration	Output voltage	Result
1	When inputs V ₁ , V ₂ & V ₃ have been applied on -Ve terminal	Vo=	Is O/P proportional to sum of inputs? (Yes / No)
2	When input V ₁ , V ₂ & V ₃ have been applied on +Ve terminal	Vo=	Is output proportional to sum of inputs? (Yes / No)

Formula to calculate output voltage of summing amplifier

i For Inverting Amplifier

$$V_{o} = -\left(\left(\frac{R_{f}}{R_{in}} \times V_{1}\right) + \left(\frac{R_{f}}{R_{in}} \times V_{2}\right) + \left(\frac{R_{f}}{R_{in}} \times V_{3}\right)\right) = \frac{R_{f}}{R_{in}}\left(V_{1} + V_{2} + V_{3}\right)$$

ii For Non-Inserting Amplifier


$$V_{\circ} = \left(\left(1 + \frac{R_f}{R_{in}} \right) V_1 + \left(1 + \frac{R_f}{R_{in}} \right) V_2 + \left(1 + \frac{R_f}{R_{in}} \right) V_3 \right) = \left(1 + \frac{R_f}{R_{in}} \right) \left(V_1 + V_2 + V_3 \right)$$

If
$$R_f = R_1$$

 $V_0 = 2 (V_1 + V_2 + V_3)$

TASK 4: Construction and testing of Differential Amplifier using LM324

- 1 Modify the components values and assemble the circuit shown in Fig 4.
- 2 Get the assembled circuit checked by the instructor.

- 3 Repeat step 5 of Task 1.
- 4 Apply the DC inputs to the differntial amplifier circuit at pin 2 and pin 3 through 10k resistors as per the Table 3.
- 4 Measure the output using Multimeter and record in given table.
- 5 Change the input values at V1 and V2 and record the output readings in Table 3.

- 6 Compare the calculated value with observed.
- 7 Get the work checked by the Instructor.

Note: A R_{f1} = R_{f2} = R_f and R₁ = R₂ - R_{in}

$$V_{o} \text{ Output} = (V_{2} - V_{1}) \frac{R_{f}}{R_{in}}$$

Oberservation table

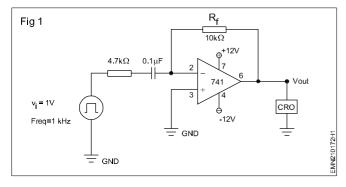
Table 3

Input to Differe Amplfie	ntial	Output to (V _o) calculated	Output Observed (V _o)
V ₁	V ₂		
0.5V	1V		
+1V	-2V		
-2V	+2.5V		

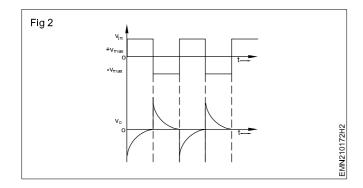
Exercise 2.10.172

Electronic Mechanic- Op-Amp & Timer 555 Applications

Construct and test Differentiator and integrator


Objectives: At the end of this exercise you shall be able to

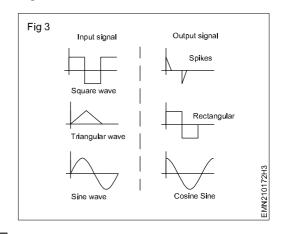
- construct and test differentiator circuit using Op-Amp IC 741
- construct and test integrator circuit using Op-Amp IC 741.


Requirement Tools/Equipments/Instruments/Data Book Materials/Components Trainees tool kit - 1 Set Resistors $1k\Omega$, $10k\Omega$, $4.7k\Omega$ CRO 20MHz dual trace - 1 No 1/4 W/CR25 - each 1 No Digital multimeter with probes - 1 No IC 741 Op-Amp - 1 No Voltmeter 0-10V - 1 No Capacitor 0.1 µF/25V - 1 No Regulated dual DC Hook up wire - as regd power supply 0-30V/2A - 1 No Breadboard - 1 No **Function generator** - 1 No Graph sheet (Linear) - 1 No

TASK 1: Construction and testing of a differentiator circuit

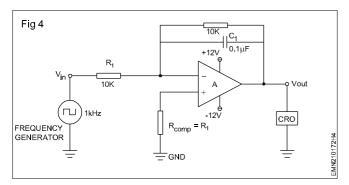
1 Collect and check the components for the good working condition and assemble the circuit on the bread board as shown in Fig 1.

2 Get the assembled circuit checked by the Instructor Calculate RC time constant(T=R,C).



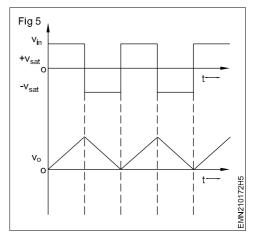
- 3 Give a square wave input of 1 V_{p-p} to the inverting terminal and set the frequency to 1/T in the function generator.
- 4 Switch ON the dual power supply and set it to +12V and -12V and GND as shown in Fig 1.

Note: For a differentiator,


$$VO = R_f C \frac{d(V_{in}(t))}{dt}$$

- 5 Prepare the CRO for measurement and observe the output waveform on the CRO.
- 6 Vary the frequency to 1/10T and observe the waveform.
- 7 Vary the frequency to 1/0.1T and observe the waveform.
- 8 Draw output and input waveform of the circuit as shown in 2 on a graph sheet for all the 3 steps.
- 9 Repeat the above procedure for different input signals viz. triangular waveform and sinwave waveform as shown in Fig 3.

TASK 2: Construction and testing of a integrator circuit


1 Check the components for their good working condition and connect the circuit on the bread board as shown in the Fig 4.

- 2 Calculate RC time constant(T=R₁C).
- 3 Apply a non sinusoidal input of 1 V_{p-p} to the inverting terminal and set the frequency to 1/T in the function generator.

$$VO = -\frac{1}{R_1C_1} \zeta V_{in} dt$$

- 4 Switch ON the dual power supply and set it to +12V, -12V and GND connections.
- 5 Observe the output waveform on the CRO.
- 6 Vary the frequency to 1/10T and observe the waveform.
- 7 Vary the frequency to 1/0.1T and observe the waveform.
- 8 Draw output and input waveform of the circuit as shown in Fig 5, on a graph sheet for all the 3 steps.
- 9 Repeat the same procedure for different input signals viz. square wave, triangular waveform.

10 Get the result checked by the Instructor.

Exercise 2.10.173

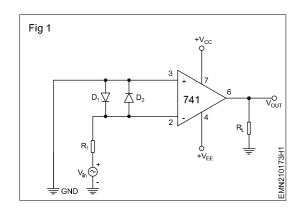
Electronic Mechanic- Op-Amp & Timer 555 Applications

Construct and test a zero crossing detector

Objectives: At the end of this exercise you shall be able to

• verify the operation of a zero crossing detector circuit using Op-Amp IC741.

Requirement				
Tools/Equipments/Instruments/Data Book Materials/Components				
 CRO Dual trace 0-20 MHz Signal Generator Regulated dual DC power supply 0-30V/2A Trainees tool kit 	- 1 No - 1 No - 1 No - 1 Set	 Breadboard IC 741 Diode 1N4007 Resistor 1kΩ, ¼ W/CR25 	- 1 No - 1 No - 2 Nos - 3 Nos	

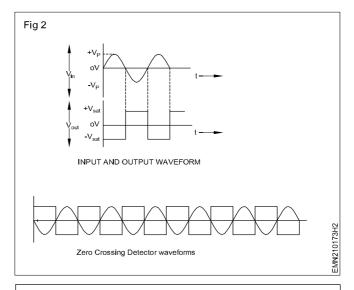

PROCEDURE

TASK 1: Construction and testing of Zero crossing detectors using Op-Amp IC741

1 Collect all the materials check the working condition using the multimeter and assemble the circuit as shown in Fig 1 on bread board.

Check the IC using the IC tester.

- 2 Connect the reference Input to zero crossing detector, pin no 3 to GND.
- 3 Get the assembled circuit checked by the Instructor.



- 4 Connect the input sinewave signal, obtained from a Function generator, at 1 kHz/1 V_{n-n}
- 5 Prepare the CRO for measurements and connect the input and output to dual channel CRO, and compare the input and output wave forms with Fig 2 and record the observations in Table 1.
- 6 Get the work checked by the Instructor.

Observation Table

Table 1

Parameter	Waveform	Time
Input - Voltage (V _{in}) =		
Output - Voltage (V ^{out}) =		

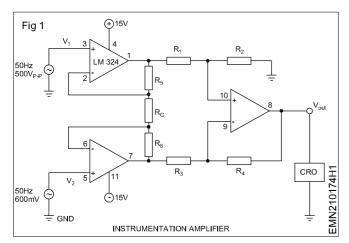
Note: Instructor may guide the trainees to note that output waveform changes state, whenever the input sinewave signal crosses the zero level. The circuit works as an Inverting Comparator.

Exercise 2.10.174

Electronic Mechanic- Op-Amp & Timer 555 Applications

Construct and test instrumentation amplifier

Objectives: At the end of this exercise you shall be able to


construct and test Instrumentation amplifier circuit using IC LM324.

Requirement Tools/Equipments/Instruments/DataE	Book	Materials/Components	
 Function generator CRO dual trace 20MHz Dual regulated DC power supply 0-30V/2A Trainees tool kit Digital multimeter with probes Data sheet of the IC LM324 	- 1 No - 1 No - 1 No - 1Set - 1 No - as reqd	 Resistors ¼ W/CR25 1kΩ 100kΩ 1kΩ POT ICLM324 Breadboard 	- 4 No: - 4 No: - 1 No - 1 No - 1 set

PROCEUDRE

TASK 1: Construction and testing of an Instrumentation amplifier circuit

1 Collect all the components, test them and refer to the pin out diagram of the IC and assemble the circuit as per the circuit diagram shown in Fig 1.

- 2 Get the assembled circuit checked by the Instructor.
- 3 Set the inputs V_1 and V_2 at different values but at the same frequency.
- 4 Switch ON the dual power supply and set the voltage + 15V, -15V and GND.
- 5 Prepare the CRO for measurements and measure the output at the output pin.
- 6 Calculate the theoretical gain from the given formula and verify the practical values.

$\begin{aligned} &Formula \\ &Voltagegain A_{V} = \frac{V_{0}}{V_{2} - V_{1}} = &\left(1 + \frac{2R_{1}}{R_{gain}}\right) \times \left(\frac{R_{3}}{R_{2}}\right) \end{aligned}$

Table

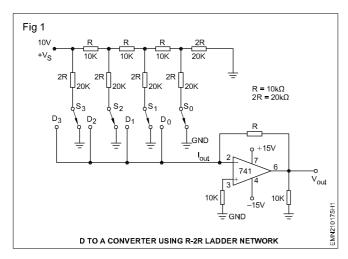
SI.No.	Applied input voltage	Voltage gain AV	Output voltage calculated (V _o)	Result Observed Output 'V _o '
1	$V_1 = V_2 =$	V _o =		

7 Get the work checked by the Instructor.

Electronic Mechanic- Op-Amp & Timer 555 Applications

Construct and test a Binary weighted and R-2R Ladder type Digital- to- Analog converters

Objectives: At the end of this exercise you shall be able to


assemble and test a digital to analog converter using R-2R ladder network using Op-Amp.

Requirements				
Tools/Equipments/Instruments		Materials/Components		
 Trainees tool kit Regulated dual DC power supply 0-30V/2A DC power supply 15V/500 mA Digital multimeter with probe 	- 1 Set - 1 No - 1 No - 1 No	 IC LM741 Data sheet of the ICs used Resistor, carbon film 10 kΩ/½ W/CR25 Breadboard IC Base 8 pin Hook up wire Miniature toggle switch SPDT 	- 1 No - as reqd - 16 Nos - 1 No - 1 No - as reqd - 4 Nos	

PROCEDURE

TASK 1: Construct and test D to A converter using R-2R ladder network

- 1 Collect all the components, check them; Refer Fig 1 and assemble the op-amp circuit using IC741 with 8 pin IC base on bread board.
- 2 Get the assembled circuit checked by the Instructor.
- 3 Connect the dual DC power supply +15, -15V and GND terminals to the IC741 referring to Fig 1.

- 4 Assemble the remaining part of R-2R ladder network on bread board ensuring four terminal connections D_0 to D_3 which are digital inputs.
- 5 Use the toggle switches S_0 to S_3 and operate them to provide logic levels low (GND) and thigh (1) as per the Table 1.
- 6 Get the work checked by the Instructor.
- 7 Apply binary logic inputs at D₀ to D₃ as per Table 1, measure voltage at the output of the Op-Amp and record them in Table.

- 8 Repeat step 7 for different binary input combinations.
- 9 Calculate the theoretical V_o by using the formula for different binary input combinations and record the same in Table 1.

Formula for theoretical output Vo

$$V_0 = \frac{D_0.2^{\circ} + D_1.2^{1} + D_2.2^{2} + D_3.2^{3}}{2^{3}}$$

Digital Input = logic 0/logic 1

Note: For (eg) If the 4 bit binary inuts are [D0 D1 D2 D3 - Decimal values = 7.

The equivalent analog value of the D to A converter can be calculated as follows:

As logic - 2 refer to 5V, $V_{ref} = 5V$ in the circuit.

For the binary inputs 1110, the input voltage x at pin 2 of Op - Amps, is

$$V_{x} = [(2^{0} \times 1) + (2^{1} \times 1) + (2^{2} \times 1) + (2^{3} \times 0)]$$

Analog =
$$\frac{1}{16}(7) = \left(\frac{7}{16}\right)$$

O/P
$$V_o = \frac{7}{16} \times 5V$$

For binary Input (-1111),

Analog output will = -5V

(-1 is the inverting amplifier gain).

Table 1

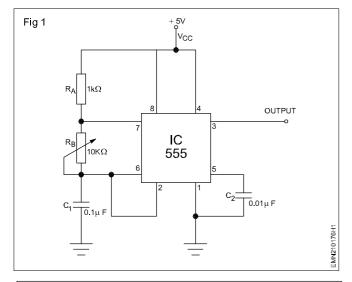
Decimal Value of		4-bit Digital Input			V _o	V _o
Input	D ₃	D_2	D ₁	D _o	Calculated	Measured
0	0	0	0	0		
1	0	0	0	1		
2	0	0	1	0		
3	0	0	1	1		
4	0	1	0	0		
5	0	1	0	1		
6	0	1	1	0		
7	0	1	1	1		
8	1	0	0	0		

10 Get the work checked by the Instructor.

Electronic Mechanic- Op-Amp & Timer 555 Applications

Construct and test Astable multivibrator circuit using IC 555

Objectives: At the end of this exercise you shall be able to

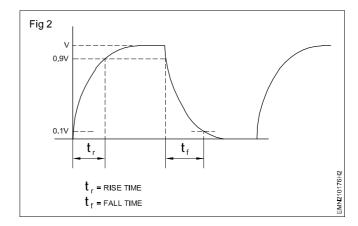

- assemble and test an astable multivibrator circuit using IC 555
- · measure pulse repetition frequency (PRF), rise time and fall time of the pulses.

Requirements				
Tools/Equipments/Instruments Regulated DC power supply 0-30/2A Trainees tool kit CRO 20MHz, Dual trace Digital multimeter with probes Materials/Components Bread board IC base, 8 pin DIL IC 555	- 1 No - 1 Set - 1 No - 1 No - 1 No - 1 No - 1 No	 Carbon resistors, ¼ W/CR25 1kΩ 10k preset Preset, 10kΩ Capacitors 0.01 μF/25V 0.1 μF/25V 4.7 μF/25V Speaker, 8Ω, 2" or any small speaker (used in pocket radios) LED 5mm, Red Hook up wires 	- 1 No - 3 reqd	

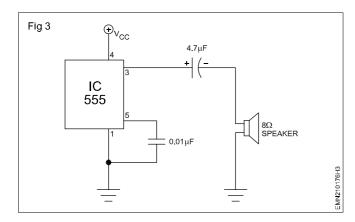
PROCEDURE

TASK 1: Construction and testing of an astable Multivibrator using IC 555

- 1 Collect all the required components, check them and assemble the astable multivibrator circuit on breadboard as shown in Fig 1.
- 2 Get the assembled circuit checked by the Instructor.


Place and fix the IC in the IC socket ensuring that the IC pins do not get bent or come out of the IC base.

- 3 From the values of the circuit components, calculate and record the ON-time(t_{ON}), OFF-time(t_{OFF}) and the pulse repetition frequency(PRF) of output.
- 4 Get the calculated values checked by the instructor.


- 5 Prepare the CRO for measurements.
- 6 Switch ON DC voltage to the circuit and check for continuous rectangular pulses at the output of the circuit using the CRO.

If there is no output, switch off the voltage to the circuit and check the circuit connections. Take the help of the Instructor, if necessary.

- 7 Measure and record the ON-time, OFF-time and PRF (pulse repetition frquency) of the output pulses.
- 8 Measure and record the rise-time and fall-time of the pulses as shown in Fig 2.

9 Connect a capacitor 4.7 μ F and a 8 Ω , 2 inch speaker at the output in series with a capacitor as shown in Fig 3.

- 10 Switch ON the DC supply and listen to the audible sound from the speaker. Change the position of the preset 'RB' and check for changed frequency output from the speaker.
- 11 Measure and record output frequencies and duty cycle at four different positions of preset.
- 12 Get the working of astable multivibrator circuit and the recorded readings checked by the Instructor.

Note:

The frequency (or) PRF of Astable multivibrator is:

•
$$f = = \frac{1.44}{(R + 2RB)C}$$

- t OFF = 0.693 x RB x C
- t ON = 0.693 (RA + RB) C
- D = Duty Cycle = $\frac{(RA + RB)}{(RA + 2RB)}$

- 1 (a) Measured ON-time (t_{on}) :_____
 - (b) Measured OFF-time (t_{OFF}):_____
 - (c) Measured pulse repetition

frequency(PRF):_____

(d) Duty cycle :_____

2 Rise time of pulse :______(Observed)

3 Fall time of pulse :______(Observed)

4 (a) Audible output heard from speaker: YES/NO

(b) Frequency/pitch of audible output from speaker varies with position of preset : YES/NO

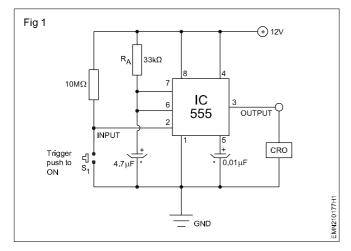
Table 1

Resistance of preset RB	Output Frequency	Waveform on CRO

Electronic Mechanic- Op-Amp & Timer 555 Applications

Construct and test Monostable multivibrator circuit using IC 555

Objective: At the end of this exercise you shall be able to


- assemble and test a monostable multivibrator using IC 555.
- use the monostable multivibrator as a touch switch.

Requirements			
 Tools/Equipments/Instruments Digital multimeter with probes Trainees tool kit Storage oscilloscope/CRO-0-20 MHz dual trace Regulated DC power supply 0-30V/2A Materials/Components Breadboard 8-pin IC base IC 555 	- 1 No - 1 Set - 1 No - 1 No - 1 No - 1 No - 1 No	 Carbon resistors, 1/4 watt 10 MΩ 33 kΩ 330Ω, 1MΩ Capacitors 25VDC 0.01μF 4.7μF LED 5mm, Red Push-button switch (Push-to-ON) Hook up wires 	- 1 No - 1 No - 1 No each - 2 Nos - 1 No - 1 No - 1 No - as reqd

PROCEDURE

TASK 1: Construction and testing of Monostable multivibrator circuit using IC 555

- 1 Collect all the materials required and check them.
- 2 Assemble the monostable multivibrator on breadboard referring to the circuit diagram shown in Fig 1.

- 3 Get the assembled circuit checked by the instructor.
- 4 Switch ON the 12VDC supply to the circuit.
- 5 Prepare the CRO for measurements and connect the CRO at the output of the monostable multivibrator.

- 6 Press the push-button(trigger signal) and observe the output pulse on the CRO.
- 7 Keep pressing and releasing the trigger button and measure the ON-time(t_{on}) of the output pulse. Record the reading in Table 1&2.

If the CRO has a storage option, use it to measure the pulse width conveniently. Take the help of the instructor to use the storage option.

- 8 Connect the CRO probe at pin No. 2 of the IC; keep pressing and releasing the trigger button and observe the trigger input waveform on the CRO. Sketch the observed waveform in the space provided in the Table 2.
- 9 Change the value R $_{\! A}$ from 33 K $\! \Omega$ to 1 M $\! \Omega$. Connect the LED with a 330 Ω resistor in series at the output pin 3 to GND.
- 10 Switch ON DC supply to the circuit; press the pushbutton (trigger) and observe the LED glow for a few seconds and turn OFF again. Record your observation.

Table 1

S.No.	R _A	С	Time	_
			Calculated T=1.11 x R _A C	Measured
1	33kΩ	4.7μF		
2	1ΜΩ	4.7μF		

Table 2

Wave form at Trigger Input Pin -2	Wave form at Output Pin-3

11 Get the work checked by the Instructor.

TASK 2: Construction and testing of Monostable multivibrator as a touch switch

- 1 Remove the push-button switch connected at pin No.2 of the IC. Connect a wire of about 0.5 metres skinned at both ends at pin No. 2 of IC.
- 2 Switch ON DC supply to the circuit. Touch once, the free end of the wire by your fingers and observe the LED glow. Repeat this step a few more times and record your observation.

The circuit is now working as a touch-switch.

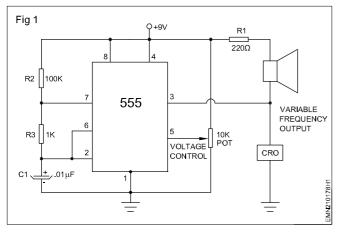
3 Get the working of the touch-switch checked by the Instructor.

Exercise 2.10.178

Electronic Mechanic- Op-Amp & Timer 555 Applications

Construct and test VCO (V to F converter) using IC 555

Objectives: At the end of this exercise you shall be able to


construct and test VCO circuit using IC 555.

Requirements Tools/Equipments/Instruments **Materials/Components** Trainees tool kit - 1 Set Bread board - 1 No Digital multimeter with probes - 1 No Resistor $100k\Omega$, $1k\Omega$, 220Ω Regulated DC power supply 0-30V/2A - 1 No 1/4 W/CR25 - 1 No each IC 555 - 1 No Capacitor 0.01 µF/25V - 1 No Loud speaker 8Ω/1W - 1 No Hookup wire - as regd 10k Linear potentiometer - 1 No

PROCEDURE

TASK 1: Construction and testing of VCO circuit using IC 555

1 Collect all the materials required for the circuit diagram shown in the Fig 1 and check them for their working condition using multimeter.

- 2 Assemble the components on breadboard according to the circuit shown in Fig 1.
- 3 Get the assembled circuit checked by the Instructor.
- 4 Switch ON 9V DC supply to the circuit from the Regulated DC power supply.
- 5 Preapare the CRO for measurement, and observe the waveform at pin no.3.

6 Adjust the DC control voltage at pin no. 5 and observe the sound and measure the effect on the output of the circuit.

This observation, conclude that the output of the circuit (i.e the frequency of astable multivibrator) varies on varying the control voltage at pin no. 5 then the circuit behaves as voltage controlled oscillator.

7 Change the DC control voltage settings as per the table and record the readings in Table 1.

Table 1

SI.No.	Input Voltage	CRO readings
1	1.5V	
2	3V	
3	4.5V	
4	7.5V	

8 Get the work checked by the Instructor.

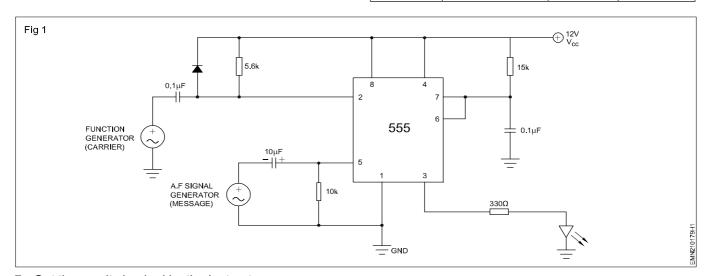
Electronic Mechanic- Op-Amp & Timer 555 Applications

Construct and test 555 timers as pulse width modulator

Objective: At the end of this exercise you shall be able to

construct and test a PWM circuit using IC555 to generate pulse width modulated output.

 Tools/Equipments/Instruments/Data Bool Trainees tool kit Digital multimeter with probes Regulated DC power supply 0-30V/2A Function generator AF signal generator Materials/Components Breadboard IC 555 IC Base-8 pin Diode 1N4001 	- 1 Set - 1 No	 Resistor 15kΩ, carbon, ¼ W 10kΩ, carbon, ¼ W 5.6kΩ, carbon, ¼ W Capacitors 25V DC 0.1μF, ceramic disc 10 μF LED 5mm, Red Push-button switch (Push-to-ON) Hook up wires 	- 1 No - 1 No - 1 No - 2 Nos - 1 No - 1 No - 1 No - as requ
---	--	--	--


PROCEDURE

TASK 1: Construction and testing of PWM circuit using IC 555

- 1 Collect all the materials required identify the components as per the circuit diagram. Ensure working condition of the components by using multimeter and IC tester.
- 2 Assemble the PWM control circuit using IC 555 as shown in Fig 1.
- 3 Switch ON 12V DC power supply.
- 4 Connect the square wave input as carrier, from function generator. Set the waveform to the required duty cycle and AF signal as message.
- 5 Observe the output LED at pin 3 and the brightness of the LED.
- 6 Prepare the CRO for measurement and observe the out waveform verify PWM frequency and duty cycle; record the waveform in Table 1.

Table 1

Function Generator frequency	A.F. Generator frequency	Output waveform	Remarks	

7 Get the result checked by the Instructor.

163